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Steganalysis Using Higher-Order Image Statistics
Siwei Lyu, Student Member, IEEE, and Hany Farid, Member, IEEE

Abstract—Techniques for information hiding (steganography)
are becoming increasingly more sophisticated and widespread.
With high-resolution digital images as carriers, detecting hidden
messages is also becoming considerably more difficult. We describe
a universal approach to steganalysis for detecting the presence of
hidden messages embedded within digital images. We show that,
within multiscale, multiorientation image decompositions (e.g.,
wavelets), first- and higher-order magnitude and phase statistics
are relatively consistent across a broad range of images, but are
disturbed by the presence of embedded hidden messages. We show
the efficacy of our approach on a large collection of images, and
on eight different steganographic embedding algorithms.

Index Terms—Image classification, image statistics, information
hiding.

I. INTRODUCTION

THE GOAL OF steganography is to embed within an in-
nocuous looking cover medium (text, audio, image, video,

etc.) a message so that casual inspection of the resulting medium
will not reveal the presence of the message (see, e.g., [1]–[4]
for general reviews). For example, with plain text as a cover
medium, a German spy, during World War I, sent the following
message:

Apparently neutral’s protest is thoroughly discounted
and ignored. Isman hard hit. Blockade issue affects pretext
for embargo on by-products, ejecting suets and vegetable
oils.

which upon casual inspection seems fairly harmless. When the
second letter of each word is extracted, however, this text is seen
to be a carrier for the following message:

Pershing sails from NY June 1.
With the advent of the Internet and the broad dissemination of
large amounts of digital media, digital images have become a
popular cover medium for steganography tools. At the time of
this paper’s publication there are more than 100 freely available
steganography software tools for embedding messages within
digital images. In addition to being nearly ubiquitous on most
web pages, digital images are well suited as a cover medium. An
uncompressed color image of size 640 480, for example, can
hide approximately 100 000 characters of text. A simple method
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for embedding a message into a digital image is to change the
least significant bit (LSB) of the image pixels, so that the LSBs
of consecutive pixels encode a message. In so doing, the per-
ceptual distortion to the cover image is nearly negligible and
unlikely to be detected by simple visual inspection.

It is not surprising that with the emergence of steganography,
that the development of a counter-technology, steganalysis, has
also emerged (see [5] for a review). The goal of steganalysis
is to determine if an image (or other carrier) contains an em-
bedded message. As this field has developed, determining the
length of the message [6] and the actual contents of the mes-
sage are also becoming active areas of research. Current ste-
ganalysis methods fall broadly into one of two categories: em-
bedding specific (e.g., [7]–[12]) or universal (e.g., [13]–[17]).
While universal steganalysis attempts to detect the presence of
an embedded message independent of the embedding algorithm
and, ideally, the image format, embedding specific approaches
to steganalysis take advantage of particular algorithmic details
of the embedding algorithm. Given the ever growing number of
steganography tools, universal approaches are clearly necessary
in order to perform any type of generic, large-scale steganalysis.

We have previously described a universal approach to ste-
ganalysis. Specifically, in [18], we showed how a statistical
model based on first- and higher-order magnitude statistics
extracted from a wavelet decomposition, coupled with a linear
discriminant analysis (LDA), could be used to detect steganog-
raphy in grayscale images. In [13], we replaced the LDA
classifier with a nonlinear support vector machine (SVM),
affording better classification accuracy. And in [19] we ex-
tended the statistical model to color images, and described a
one-class SVM that simplified the training of the classifier. In
this culminating paper, we summarize these results and extend
the statistical model to include phase statistics. We show the
efficacy of our approach on a large collection of images, and
on eight different steganography embedding algorithms. We
examine the general sensitivity and robustness of our approach
to message size, false-positive rate, JPEG compression, the
specific components of the statistical model, cover image
format, and to the choice of classifier.

II. STATISTICAL MODEL

The decomposition of images using basis functions that
are localized in spatial position, orientation and scale (e.g.,
wavelets) have proven extremely useful in image compression,
image coding, noise removal and texture synthesis. One reason
is that such decompositions exhibit statistical regularities that
can be exploited. From such decompositions, our statistical
model extracts first- and higher-order magnitude and phase sta-
tistics. Before describing the details of this model, we motivate
our choice of image representations over others.
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Fig. 1. Shown in the first column are a pair of images with identical intensity
histograms (bottom panel). Shown in the second column are a pair of images
with identical Fourier magnitudes (bottom panel).

A. Choosing an Image Representation

At the core of our statistical model is the choice of decom-
posing images using basis functions that are localized in spatial
position, orientation and scale. There are, of course, many other
possible representations to choose from. The simplest represen-
tation, for example, would be a pixel-based approach, where
the representation is simply the original intensity values. In this
representation an grayscale image is considered as a
point in a -dimensional space, where the coordinate is de-
termined by the intensity value of the pixel (a color RGB
image is represented by a point in a -dimensional space).
From such a representation, the most standard model is based on
the histogram of intensity values. Shown in the first column of
Fig. 1 are two images with exactly the same intensity histograms
(bottom panel). This example shows that such a pixel-based rep-
resentation is not sufficiently powerful to even discriminate be-
tween an image and a noise pattern.

Another popular representation is that based on a global
Fourier decomposition. In this representation, an image
is represented as a sum of sines and cosines of varying
amplitude, frequency, and orientation:

, where is a grayscale
image, and is its Fourier transform (each channel of
a color image is independently represented in the same way).
It has been observed that the power spectrum,
of natural images are often well modeled with an exponential
fall-off [20]. Shown in the right column of Fig. 1 are two images
with exactly the same Fourier magnitude (bottom panel). This
example shows that such a Fourier-based representation is not
sufficiently powerful to discriminate between an image and a
“fractal-like” pattern.

Fig. 2. Shown are 1-D space and frequency (magnitude) representations of
(a) pixel, (b) Fourier, and (c) wavelet-like basis functions.

The pixel- and Fourier-based representations are, in some
ways, at opposite ends of a spectrum of representations. The
basis functions for the pixel-based representation are perfectly
localized in space, but are infinite in terms of their frequency
coverage. On the other hand, the basis functions for a Fourier-
based representation are perfectly localized in frequency, but are
infinite in the spatial domain. Image representations with basis
functions partially localized in both space and frequency (e.g.,
wavelets), offer a compromise between these representations,
Fig. 2. As a result, these representations are generally better than
pixel- or Fourier-based representations at capturing local image
structure. To this end, we employ a wavelet decomposition and
a local angular harmonic decomposition from which we extract
a statistical feature vector for differentiating between clean and
stego images. We empirically show that these representations
and subsequent statistical measurements capture certain funda-
mental properties of an image which are disturbed in the pres-
ence of steganography.

B. Image Representation

We describe two image decompositions that localize image
structure in both space and frequency—a wavelet decompo-
sition and a local angular harmonic decomposition. From the
former we extract magnitude statistics and from the latter we
extract phase statistics.

1) Wavelet Decomposition: The image decomposition
employed here is based on separable quadrature mirror filters
(QMFs) [21]–[23]. We choose this specific decomposition over
more traditional wavelets (e.g., Haar or Daubechies) because,
unlike other wavelets, QMFs minimize spatial aliasing within the
decomposition subbands. On the other hand, QMFs do not afford
perfect reconstruction of the original image—though reconstruc-
tion errors can be minimized with a careful filter design [23].
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Fig. 3. Three-scale, three-orientation decomposition of the green channel of the image shown to the left. Shown are, starting from the lower-left and moving
counter-clockwise, the horizontal, diagonal, and vertical subbands at each of three scales, with the residual low-pass subband in the upper left corner.

The separable QMFs consist of a pair of one-dimensional
low-pass, , and high-pass, , filters. The first scale of the
decomposition, consisting of a vertical, horizontal, and diag-
onal subband, is generated by convolving each color channel,

, of the intensity image, , with these filters:

(1)

(2)

and

(3)

where is the convolution operator. Subsequent scales are gen-
erated by creating a low-pass subband:

(4)

which is down-sampled by a factor of two and filtered in the
same way as above, to yield , , and

. This entire process is repeated to create as many
scales, , , and , as desired,
or as is possible given the image size. Shown in Fig. 3, for
example, is a three-scale QMF decomposition.

2) Local Angular Harmonic Decomposition: It is pos-
sible to model local phase statistics from a complex wavelet
decompostion [24], affording a unified underlying image rep-
resentation with the wavelet decomposition described in the
previous section. We have found, however, that a local an-
gular harmonic decomposition (LAHD) affords more accurate
estimates of local phase [25]. The LAHD decomposes local
image structure by projecting onto a set of angular Fourier
basis functions. The -order LAHD, a two-dimensional (2-D)
complex valued quantity, is given by

(5)

where , is an integrable radial function, and
is the polar parameterization of the color channel,

, centered at location .
The -order LAHD can be computed efficiently by con-

volving the image with derivatives of a differentiable radial filter
(e.g., a Gaussian):

(6)

For example:

Note that, as with the basis functions of the previous section,
these basis functions, sums of derivatives of a low-pass filter,
are also localized in space and frequency.

C. Magnitude Statistics

Given the QMF decomposition described in Section II-B1,
the first component of the statistical model is composed of the
mean, variance, skewness and kurtosis of the subband coeffi-
cients at each orientation, scale and color channel. While these
statistics characterize the basic coefficient distributions, they
are unlikely to capture the strong correlations that exist across
space, orientation, scale and color. For example, edges tend to
extend spatially and across multiple scales. As such, if a large
coefficient is found in a horizontal subband, then it is likely that

Authorized licensed use limited to: ULAKBIM UASL - Dicle Univ. Downloaded on November 12, 2008 at 13:47 from IEEE Xplore.  Restrictions apply.



114 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 1, NO. 1, MARCH 2006

its left and right spatial neighbors in the same subband will also
have a large value. Similarly, a large coefficient at scale might
indicate a large value for its “parent” at scale .

In order to capture some of these higher-order statistical cor-
relations, we collect a second set of statistics that are based on
the errors in a linear predictor of coefficient magnitude [26]. For
the purpose of illustration, consider first a vertical band of the
green channel at scale , . A linear predictor for the
magnitude of these coefficients in a subset1 of all possible spa-
tial, orientation, scale, and color neighbors is given by

(7)

where denotes absolute value and are the weights. This
linear relationship can be expressed more compactly in matrix
form as

(8)

where contains the coefficient magnitudes of strung
out into a column vector, and the columns of the matrix con-
tain the neighboring coefficient magnitudes as specified in (7),
and . Only magnitudes greater than 1 are con-
sidered, with the intensity values in the range [0,255]. Low mag-
nitude coefficients are ignored when constructing the linear pre-
dictor because we expect them to be less predictable from their
neighbors, and therefore less informative in capturing statistical
regularities. The weights are determined by minimizing the
following quadratic error function:

(9)

This error function is minimized by differentiating with respect
to :

(10)

setting the result equal to zero, and solving for to yield the
least-squares estimate:

(11)

Given the large number of constraints (one per pixel) in only
nine unknowns, it is generally safe to assume that the 9 9
matrix will be invertible.

Given the linear predictor, the log error between the actual
coefficient and the predicted coefficient magnitudes is

(12)

1The particular choice of neighbors was motivated by the observations of [26]
and modified to include noncasual neighbors.

where the is computed point-wise on each vector compo-
nent. It is from this error that additional statistics are collected,
namely the mean, variance, skewness and kurtosis. This process
is repeated for scales , and for the subbands
and , where the linear predictors for these subbands are of
the form

(13)

and

(14)

A similar process is repeated for the horizontal and diagonal
subbands. As an example, the predictor for the green channel
takes the form

(15)

(16)

For the horizontal and diagonal subbands, the predictor for the
red and blue channels are determined in a similar way as was
done for the vertical subbands (13), (14). For each oriented,
scale and color subband, a similar error metric, (12), and error
statistics are computed.

For a decomposition with scales , the total
number of basic coefficient statistics is

, and the total number of error statistics
is also , yielding a total of statistics. These
statistics form the first half of the feature vector to be used to
discriminate between clean and stego images.
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D. Phase Statistics

Given the local angular harmonic decomposition (LAHD) of
Section II-B2, a measure of relative phase, as described in [25],
is computed as follows:

(17)

where is the angle between two complex numbers, and
. From the relative phase, the following rotation

invariant signature, as described in [25], is computed:

(18)
where denotes magnitude and .

From the 1st- through -order LAHDs, signa-
tures are collected from within and across color channels (there
are combinations of LAHD orders, six ordered
combinations of color channels, and two statistics per combina-
tion, yielding ). The phase statistics are collected
from the 2-D distribution of these signatures in the complex
plane. Specifically, assuming zero-mean data, we consider the
covariance matrix:

(19)

where:

(20)

(21)

(22)

(23)

where is the total number of signatures, and and
correspond to the real and imaginary components of a complex
quantity. The structure of this covariance matrix is captured by
the measures:

(24)

and,

(25)

Considering this distribution as a scaled and rotated Gaussian
distribution, the first measure corresponds to the relative scales
along the minor and major axes, and the second of these mea-
sures to the orientation of the distribution.

In order to capture these phase statistics at various scales,
this entire process is repeated for several levels of a Gaussian
pyramid decomposition of the image [27]. These statistics form
the second half of the feature vector to be used to discriminate
between clean and stego images.

E. Summary

Here we summarize the construction of the statistical feature
vector from a color (RGB) image.

1) Build a -level, 3-orientation QMF pyramid for each
color channel (1)–(4).

2) For scales and for orientations , and
, across all three color channels, , compute

the mean, variance, skewness, and kurtosis of the subband
coefficients. This yields statistics.

3) For scales , and for orientations , and
, across all three color channels, , build a

linear predictor of coefficient magnitude, (11). From the
error in the predictor, (12), compute the mean, variance,
skewness, and kurtosis. This yields statistics.

4) Build a -level Gaussian pyramid for each color channel.
For each level of the pyramid, compute the 1st- through

-order LAHD, (6). Compute the relative phases, (17).
Compute the rotation invariant signature, (18), across all
color channels and LAHD orders, from which the covari-
ance matrix, (19), and subsequent phase statistics are ex-
tracted, (24) and (25). This yields statistics.

III. CLASSIFICATION

From the measured statistics of a training set of clean and
stego images, the goal is to determine whether a test image
contains a hidden message. To this end, we employ support
vector machines (SVM) [28]–[30]. In the next section, we
consider the effectiveness of linear, nonlinear and one-class
SVMs—see [13], [19] for the full details on the construction of
these classifiers.

IV. RESULTS

We have collected 40 000 natural images.2 These color
images span a range of indoor and outdoor scenes, are JPEG
compressed with an average quality of 90%, and typically are
600 400 pixels in size (on average, 85.7 kilobytes). To contend
with slight variations in image size, only the central 256 256
region of each image was considered in the analysis. Statistics, as
described in Section II, were collected from each image, yielding
a 432-D feature vector of magnitude and phase statistics. For
the magnitude statistics, a four-level, three-orientation QMF
pyramid was constructed using 9-tap filters, from which 108
marginaland108error statisticswerecollected.For thephasesta-
tistics a three-level Gaussian pyramid was constructed (using the
5-tap binomial filter [1 4 6 4 1]/16), from which the 1st- through
4th-order LAHDs are computed, to yield 216 phase statistics.3

Next, 40 000 stego images were generated by embedding
messages of various sizes into the full-resolution cover images.
The messages consisted of central regions of randomly chosen
images from the same image database with sizes 6.0, 4.7, 1.2,
0.3 kilobytes (K), corresponding to 100%, 78%, 20% and 5%
of total cover capacity. The total cover capacity is defined to be
the maximum size of a message that can be embedded by the
embedding algorithm. Since this quantity will vary depending
on the cover image, we compute the average capacity across
1000 cover images. The steganography capacity is then the ratio
between the size of the embedded message and the total cover

2All natural images were downloaded from www.freefoto.com—all images
were photographed with a range of different films, cameras, and lenses, and
digitally scanned.

3Since the N -order LAHD requires an N -order discrete derivative, the
computation of higher-order LAHDs requires similarly higher-order derivatives.
While computing higher-order discrete derivatives can be challenging, we find
that we are able to compute stable LAHDs up to 4th-order.
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capacity. Messages were embedded using Jsteg [31], Outguess
[32], Steghide [33], Jphide [34], and F5 [35]. Each stego image
was generated with the same quality factor as the original cover
image so as to minimize double JPEG compression artifacts.
The same statistical feature vector as described above was
computed from the central 256 256 region of each stego
image. In all of the results presented below, 32 000 of the clean
and stego images were used to train a SVM, and the remaining
8000 images were used in testing—throughout, results from
the testing stage are presented.

Shown in Fig. 4 is the detection accuracy for each of five
steg embedding programs, four different message sizes, and
for the following types of SVMs (a) linear, (b) nonlinear (RBF
kernel), and (c) one-class with six hyperspheres (fewer hyper-
spheres led to poor generalization, and more hyperspheres led
to over-fitting). All SVM parameters were optimized by a grid
search that optimized the SVM training and testing accuracy.
Specifically, the classifier was trained on 30 000 cover and
30 000 stego images, and then tested on 2000 cover and 2000
stego images. After this search was completed, the parameter
set resulting in the best performance, while keeping the false
positive rate fixed, was used as the starting point for the next
round of training that reduced the granularity of the parameter
search. The left-most gray bar in Fig. 4 corresponds to the de-
tection accuracy of clean images which is, on average, greater
than 99.0% (the false-positive rate, a clean image incorrectly
classified as stego, is 100 minus this value). For the linear SVM,
the average detection accuracy is 44.7%, 26.7%, 11.2%, and
1.0% for embeddings at capacities 100%, 78%, 20%, and 5%,
with a maximum/minimum detection accuracy of 61.4%/31.1%,
31.2%/16.5%, 12.3%/8.3%, and 2.3%/0.3%. For the nonlinear
SVM,4 the average detection accuracy is 78.2%, 64.5%, 37.0%,
and 7.8% with a maximum/minimum detection accuracy of
91.1%/66.4%, 76.4%/51.8%, 43.2%/31.3%, and 11.2%/4.8%.
For the one-class SVM, the average detection accuracy is 76.9%,
61.5%, 30.3% and 5.4%, with a maximum/minimum detection
accuracy of 92.4%/64.4%, 79.6%/49.2%, 42.3%/15.8%, and
8.9%/2.7%. The nonlinear SVM gives a clear benefit over the
linear SVM, while the one-class SVM results in only a modest
degradation in detection accuracy, while affording a simpler
training stage. For point of comparison, the results for the non-
linear SVM [Fig. 4(b)] are annotated with the detection accuracy
for the linear SVM [Fig. 4(a)], and the detection accuracy for
the one-class SVM [Fig. 4(c)] are annotated with the detection
accuracy for the nonlinear SVM [Fig. 4(b)].

Shown in Fig. 5(a) is the detection accuracy for a nonlinear
SVM with a classification accuracy of 99.9% (0.1% false-pos-
itive rate). The average detection accuracy is 70.7%, 56.5%,
27.7%, and 3.9% for embeddings at capacities 100%, 78%,
20% and 5%, with a maximum/minimum detection accuracy
of 86.3%/58.3%, 71.2%/42.1%, 37.8%/14.6% and 7.1%/1.3%.
For point of comparison, these results are annotated with
the detection accuracy for the nonlinear SVM with a 99.0%
detection accuracy (1.0% false-positive rate), Fig. 4(b). Note
that an order of magnitude lower false-positive rate results in a
relatively small degradation in detection accuracy.

4LIBSVM [36], with a radial basis kernel, was used as the underlying SVM
algorithm.

Fig. 4. Classification accuracy for (a) linear, (b) nonlinear, and (c) one-class
SVMs. The left-most gray bar corresponds to the classification accuracy (the
false-positive rate, a clean image classified as stego, is 100 minus this value).
Each group of four bars corresponds to different steg embedding programs
[jsteg (js); outguess (og); steghide (sh); jphide (jp); and F5 (f5)]. The numeric
values on the horizontal axes correspond to the message size (as a percentage
of cover capacity). For point of comparison, the dots in panel (b) correspond to
the detection accuracy of panel (a); and the dots in panel (c) correspond to the
detection accuracy of panel (b).

Shown in Fig. 5(b) is the detection accuracy for a nonlinear
SVM trained on JPEG images with quality factor 90 (left) or 70
(right) and then tested on JPEG images with quality 90 and 70.
The classifier trained and tested on images with quality factor
90, and a message embedded at a capacity of 20%, achieves an
average detection accuracy of 64.5% with a classification accu-
racy of 98.8% (1.2% false-positive rate). When tested on images
of quality factor 70, this same classifier achieves an average
detection accuracy of 77.0%. This higher accuracy seems, at

Authorized licensed use limited to: ULAKBIM UASL - Dicle Univ. Downloaded on November 12, 2008 at 13:47 from IEEE Xplore.  Restrictions apply.



LYU AND FARID: STEGANALYSIS USING HIGHER-ORDER IMAGE STATISTICS 117

Fig. 5. Classification accuracy for (a) a nonlinear SVM with 0.1%
false-positives. For point of comparison, the dots correspond to the detection
accuracy for a nonlinear SVM with 1.0% false-positives; (b) a nonlinear SVM
trained on JPEG images with quality factor 90 (left) or 70 (right). The dots
on the left-most bars correspond to testing on quality factor 70, and the dots
on the right-most bars correspond to testing on quality factor 90; and (c) a
nonlinear SVM trained on (from left to right) magnitude marginal statistics
only, magnitude error statistics only, phase statistics only, and magnitude
marginal and error statistics. The dots correspond to a nonlinear SVM trained
on the complete set of statistics. The gray bars correspond to the classification
accuracy (the false-positive rate, a clean image classified as stego, is 100
minus this value). Each group of bars corresponds to different steg embedding
programs [jsteg (js); outguess (og); steghide (sh); jphide (jp); and F5 (f5)]. The
numeric values on the horizontal axes correspond to the message size (as a
percentage of cover capacity).

first glance, to be a bit puzzling, but note that the classification
accuracy decreases to 77.4% (22.6% false-positive rate), ren-
dering this classifier largely useless for image qualities other than
those near to the training images. The classifier trained and tested

Fig. 6. Classification accuracy for nonlinear SVM on TIFF and GIF
format images. The gray bars correspond to the classification accuracy (the
false-positive rate, a clean image classified as stego, is 100 minus this value).
Each group of four bars corresponds to different steg embedding programs (a
generic LSB embedding in TIFF (ls) and EzStego in GIF (ez). The numeric
values on the horizontal axis correspond to the message size (as a percentage
of cover capacity).

on images with quality factor 70 achieves an average detection
accuracy of 54.4% with a classification accuracy of 98.8% (1.2%
false-positive rate). When tested on images of quality factor
90, this same classifier achieves an average detection accuracy
of only 19.2%, with a classification accuracy of 91.3% (8.7%
false-positive rate), again rendering this classifier largely useless
for image qualities other than those near to the training images.
For point of comparison the dots on the left-most bars correspond
to testing on quality factor 70 after training on quality factor
90, and the dots on the right-most bars correspond to testing on
quality factor 90 after training on quality factor 70. These results
show that our classifiers do not generalize well to new JPEG
quality factors, but that individually trained classifiers, on several
JPEG quality factors, are able to detect steg in carrier images
of varying compression factors.

Shown in Fig. 5(c), from left to right, is the detection accu-
racy for a nonlinear SVM trained with magnitude marginal sta-
tistics only, magnitude error statistics only, phase statistics only,
and magnitude marginal and error statistics. For point of com-
parison, the dots correspond to a nonlinear SVM trained on the
complete set of statistics. These results show that the combined
magnitude and phase statistics provide for better detection ac-
curacy than only a subset of the statistics. The phase statistics,
however, provide only an incremental improvement in overall
accuracy—see below for a further discussion on this.

While the previous results were based on JPEG cover images,
the results presented next are for TIFF and GIF format images
(converted from their original JPEG format—performance on
these previously compressed images may not be perfectly rep-
resentative of true TIFF or GIF images). For the TIFF cover
images, messages were embedded using a generic least signifi-
cant bit (LSB) algorithm. These messages were of sizes 84.6 K,
75.0 K, 18.8 K, and 4.6 K corresponding to embedding ca-
pacities of, approximately, 100%, 89%, 22% and 5%. For the
GIF cover images, messages were embedded using EZStego
[37]. These messages were of sizes 26.2 K, 22.7 K, 6.7 K, and
1.6 K corresponding to embedding capacities of, approximately,
100%, 85%, 25%, and 6%. Shown in Fig. 6 is the detection ac-
curacy for nonlinear SVMs separately trained on the TIFF and
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Fig. 7. Shown is the detection accuracy of linear classifiers as a function of
(top) the number and category of feature (coefficient or error); and (bottom)
the number and category of feature (magnitude or phase). The horizontal axis
corresponds to the number of statistics incorporated, and the vertical axis
corresponds to the detection accuracy in percentage. In the top panel the white
and gray stripes correspond to error and coefficient statistics, respectively. In
the bottom panel the white and gray stripes correspond to the magnitude and
phase statistics, respectively.

GIF images. Each group of bars corresponds to a different em-
bedding algorithm: from left to right, LSB (ls) and EZStego
(ez). The gray bars correspond to a detection accuracy of 99.0%
(1.0% false-positive rate). For the TIFF images, the detection
accuracy is 72.3%, 52.9% 11.3% and 1.2%.

Note that the overall detection accuracy for these TIFF car-
riers is lower than for the JPEG carriers, which may, at first,
seem surprising given that the uncompressed TIFF images pro-
vide a considerably larger cover medium. We suspect that the
reason for this difference is that the TIFF embedding is LSB-
based, while the JPEG embedding is block DCT-based. As a re-
sult, changes to the DCT coefficients affect an entire 8 8 pixel
block, whereas changes to the LSB only affect a single pixel. For
the GIF images, the detection accuracy is 64.4%, 48.2%, 17.6%,
and 2.1%. In terms of embedding capacity, these detection rates
are slightly lower than the detection accuracy for JPEG cover
images.

We wondered which set of statistics, coefficient, error or
phase, were most crucial for the classifier. Shown in Fig. 7 (top
panel) is the accuracy of classifiers plotted against the number
and category of feature (coefficient or error) for the linear clas-
sifier.5 We began by choosing the single feature, out of the 216
possible coefficient and error features, that gave the best clas-
sification accuracy. This was done by building 216 classifiers
each based on a single feature, and choosing the feature that
yielded the highest accuracy (the feature was the variance in the
error of the green channel’s diagonal band at the second scale).
We then choose the next best feature from the remaining 215
components. This process was repeated until all features were
selected. The solid line in Fig. 7 (top panel) is the accuracy as a
function of the number of features. The white and gray regions

5This analysis was performed only on the linear classifier because the com-
putational cost of retraining 23220 = 216 + � � �+ 1 nonlinear classifiers was
prohibitive. We expect a similar pattern of results for the nonlinear SVM.

correspond to error and coefficient features, respectively. That
is, if the feature included on the iteration is a coefficient then
we denote that with a vertical gray line at the position on the
horizontal axis. Note that the coefficient and error statistics are
interleaved, showing that both sets of statistics are important for
classification. Shown in Fig. 7 (bottom panel) is the accuracy of
the classifier plotted against the number and category of feature
(magnitude or phase). In this case, it is clear that the magnitude
statistics (coefficient and error) are far more important than the
phase statistics. That is, the first 70 categories belong to the
magnitude statistics (for which we do not differentiate between
coefficient or error). We were surprised that the phase statistics
did not provide a larger boost to the overall detection accuracy.
There are several possible reasons for this: 1) our specific
statistical model for phase simply fails to capture the relevant
phase statistics of natural images; 2) our phase statistics do
capture the relevant phase statistics, but the steg embedding
algorithms do not disturb these statistics; or 3) what we think
most likely, the magnitude error statistics implicitly capture
similar properties of the phase statistics—that is, geometric
regularities (e.g., edges) are explicitly captured by the phase
statistics through correlations between the angular harmonics,
while these same regularities are implicitly captured by the
error statistics through correlations of the magnitude across
space and scale.

V. RELATED WORK

There are, of course, many steganalysis techniques that have
emerged over the past few years. While many of these are spe-
cific to individual embedding programs, a few are universal, or
near-universal approaches. In this section we attempt to com-
pare the effectiveness of our approach to that of Fridrich [17], as
it has clearly emerged has one of the most effective techniques.

Fridrich extracted statistical measurements based on marginal
and joint DCT statistics, from clean and stego images. A Fisher
linear discriminant classifier was then trained and tested on a
collection of 1800 images. While there are some obvious high-
level similarities to our approaches, a direct comparison is dif-
ficult since 1) Fridrich’s approach was specifically designed to
detect steganography in JPEG images while our approach was
applied to JPEG, GIF, and TIFF formats; 2) Fridrich employed a
linear classifier while we employed linear and nonlinear classi-
fiers; 3) Fridrich tested her approach on 1800 grayscale images,
while we tested ours on 40 000 color images; and 4) Fridrich
employed only 23 statistical features, while we employed a con-
siderably larger 432 features.

With these caveats in mind, we compared the performance
of our approaches on OutGuess and F5. For a 1% false-positive
rate and an embedding rate for Outguess of 0.05 and 0.1 bpc6

(bits per nonzero DCT coefficient), our detection accuracies
(nonlinear SVM) were 53.8% and 71.3% while those of Fridrich

6Our detection accuracies are given with respect to the total cover capacity,
defined to be the maximum size of a message that can be embedded by the
embedding algorithm. Comparable bpc values for these embedding rates were
determined to allow for a direct comparison to Fridrich’s results. For OutGuess,
a bpc value of 0.05 and 0.1 corresponds to an embedding capacity of 44.2%
and 88.5%, respectively. For F5, a bpc value of 0.05 and 0.1 corresponds to an
embedding capacity of 7.8% and 15.7%, respectively.
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were 31.1% and 99.1%. For a 1% false-positive rate and an em-
bedding rate for F5 of 0.05 and 0.1 bpc, our detection accuracies
were 10.7% and 26.3% while those of Fridrich were 2.6% and
7.2% While our approach seems to be more effective at lower
embedding rates, Fridrich’s approach is more effective at higher
embedding rates. This is particularly impressive given the low-
dimensional feature vector and the use of only a linear classifier.

VI. DISCUSSION

We have described a universal approach to steganalysis that
relies on building a statistical model of first- and higher-order
magnitude and phase statistics extracted from multiscale, mul-
tiorientation image decompositions. We have shown that these
statistics are relatively consistent across a broad range of im-
ages, but are disturbed by the presence of hidden messages. We
are able to reliably detect, with a fairly low false-positive rate,
the presence of hidden messages embedded at or near the full
capacity of the underlying cover image. As the message size
becomes smaller, the chance of detection falls—messages uti-
lizing approximately 5% of the cover are unlikely to be de-
tected. We expect that as universal steganalysis continues to im-
prove, steganography tools will simply embed their messages
into smaller and smaller portions of the cover image. As a re-
sult, hidden messages will continue to be able to be transmitted
undetected, but high-throughput steganography will become in-
creasingly more difficult to conceal.
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