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Abstract

Robust Techniques for Data Hiding in Images and Video

by
Jong Jin Chae

In this thesis we present a study and development of robust techniques for hiding data in
images and video. In recent years, the internet and the world wide web have revolutionalized
the way in which digital data is distributed. The widespread and easy access to multimedia
content has motivated development of technologies for digital steganography or data hiding.
Much of the recent work in data hiding is about copyright protection and authentication of
multimedia data. Such digital watermarking typically require very few bits, and the objectives
include robustness to attacks on the data. On the other hand, the primary goal of the research
presented here is to develop techniques for Aiding large amounts of multimedia data such as
text, images, audio, and video, in images and video. In developing these techniques, emphasis
is on robustness to signal compression as it is one of the mostly frequently performed signal
processing operation on the data.

The thesis presents new techniques for such data embedding using well known trans-
forms such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform
(DWT). We utilize spread spectrum embedding and lattice encoding to hide signature data
that is as much as 25% of the host data size. The signature data can be gray scale or color
images or video sequences or audio data. The host signals explored include images and video.
We demonstrate robustness to JPEG and MPEG compression that include both lossless and
lossy hidden data recovery. We present methods that do not need the original host data for
signature signal recovery.

The work presented here significantly advances the state of the art in multimedia data
hiding, and has the potential of creating a whole new domain of applications including
embedded control of multimedia data, smart multimedia objects, and video/audio quality con-

trol.
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Chapter 1

Introduction

The internet and the world wide web have revolutionized the way in which digital data
is distributed. The widespread and easy access to multimedia content has motivated devel-
opment of technologies for digital steganography or data hiding, with emphasis on access
control, authentication, and copyright protection. Steganography deals with information hid-
ing, as opposed to encryption. Much of the recent work in data hiding is about copyright
protection of multimedia data. This is also referred to as digital watermarking. While access
restrictions can be provided using electronic keys, these do not offer protection against fur-
ther (illegal) distribution of such data.

Digital watermarking for copyright protection typically requires very few bits, on the
order of 1% of the host data size. These watermarks could be alpha-numeric characters, or
could be multimedia data as well. The primary objective of watermarking is to be able to
identify the rightful owners by authenticating the watermarks. As such, it is desirable that
the methods for embedding and extracting digital watermarks be resistant to typical signal
processing operations on the host, such as compression, and intentional attacks to remove
the watermarks. Signal compression is of special interest as it is perhaps the most frequently
performed operation on multimedia data. In particular, lossy compression affects the inter-
nal representation of the hidden data. There is a clear need for techniques that are robust to
lossy coipression, and development of such techniques is the focus of this dissertation.

Our main objective is to develop techniques for Aiding large amounts of multimedia

data, such as text, images, audio and video, in images and video. Hence, the requirements



2 Chapter 1. Introduction

Steganography is the art and science of communicating in a way which hides
the existence of the communication. In contrast to cryptography, where the “enemy”
is allowed to detect, intercept and modify messages without being able to violate
certain security premises guaranteed by a cryptosystem, the goal of steganography
is to hide messages inside other “harmless” messages in a way that does not allow
any “enemy” to even detect that there is a second secret message present [Markus
Kuhn 1995-07-03].

(a) A text message [5]

h Ko

(b) Image example [5]

FIGURE 1-1. Examples of signature data, (a) a text message (1535 bytes), and (b) a
satellite image (432x320 pixels, 1 byte per pixel) [5].

are different from typical digital watermarking for data authentication. Enabling applica-
tions for such large scale data hiding include embedded control to track the use of a video
clip in pay-per-view applications, hidden communications of text (e-mail), voice and visual
data, smart images/video that can self-correct under intentional attacks, to mention a few.
The capability to hide large amounts of data will also enable robust hiding of digital water-
marks by introducing redundancies in the data.

Figure 1-1(a) shows an example of a text message that needs to be sent using a host
image. If the hidden data are images or video, as in Figure 1-1(b) which shows a satellite

photograph, one can tolerate a moderate amount of loss in reproduction. Since the emphasis



(b) Host image Il

(a) host image | - ‘ (Droeshout engraving of

(Renoir’s Le Moulin de la Galette [5]) William Shakespeare [5])

ey

s (d) Watermarked image
(c) Watermarked image (signature: text)
(signature: airphoto)

£

FIGURE 1-2. Sample host images (Renoir: 432x320, Shakespeare: 192x240).

is on hiding, the original host images should show no obvious distortion when embedded
with the messages. Figure 1-2 illustrates some examples of embedding, using the two mes-
sages of Figure 1-1 in two host images. As can be seen from the embedded images, it is hard

for a casual observer to notice the difference between the original and the embedded hosts.
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4 Chapler 1. Introduction

1.1 Data Hiding vs. Data Encryption

While the data hiding framework is similar to generic encryption, there is one impor-
tant difference between the two. Although both.endeavor to hide a secure signature, the
approaches-are very different. In encryption or cryptography, the original data is changed to
the another format, so that the original data can no longer be determined from the
encrypted data [86]. Thus the format of the encrypted data is different from the original
data. On the contrary, data hiding strives to conceal and represent the secure data inside a
host, in such a manner that the modified host with the secure data inserted remains percep-
tually indistinguishable from the original host. Here the host data format is unchanged. In
contrast to encryption or cryptography, which focuses on rendering messages unintelligible
to any unauthorized persons, the heart of data hiding lies in devising methods for conceal-
ing messages in a host medium without perceptually altering the host content.

The embedding procedure must be secure in that an unauthorized user must not be

able to detect the presence of hidden data, let alone remove or alter it.

1.2 Terminology

Before we continue, we would like to introduce terminology that is used in this thesis.
The signature or message data refers to the secure data that we would like to embed or
conceal. This is also referred to as a digital watermark in applications related to authenti-
cation. In the example of Figure 1-1, the text and the satellite image constitute the signature
data. The source data is used to hide the signature data; we also refer to the source as the
host. The procedure of inserting or hiding the signature data in the host is referred to as
embedding or watermarking. Embedding a signature into a host yields the watermarked or
embedded data. The extraction procedure operates on the embedded data and possibly the

~ original host, to yield the recovered data, also referred to as the reconstructed data. If the

original host is not available during recovery, the recovered data includes both the recov-

ered signature as well as the recovered host.
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FIGURE 1-3. Schematic of a digital watermarking system.

Figure 1-3 shows a schematic of a typical digital watermarking system. Here we can
draw an analogy with a typical digital communications system: Embedding is analogous to
encoding, and signature recovery is similar to decoding [93]. During the embedding pro-
cess, one can make use of the perceptual characteristics of the human visual system, such
that the embedded host data shows very little visible distortions. Similar to noise in a com-
munication channel, the watermarked image might undergo undesirable transformations,
such as intentional manipulations to remove or degrade the quality of the watermarking, or
typical signal processing operations such as compression that affect the internal representa~
tion of the watermark. In most of the recent work on digital watermarking, the original host
is assumed to be available during recovery. A more challenging problem, however, is to
recover the hidden data without the original host. In this thesis, we propose techniques that
can recover the signature data without any knowledge of the original host.

For authentication purposes, the watermarking algorithm must be robust enough to
withstand not only degradations brought about by unavoidable signal processing operations,
geometric distortions, cropping, A/D conversion, and so on, but also intentional attacks to
remove existing watermarks. To ensure this, only a small quantity of hidden data (signature)

can be reliably embedded in the host. In the more general data hiding scenario, the quantity
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of the hidden data could be significantly large and robustness to lossy compression is par-

ticularly important.

1.3 Research Objectives

The main requirements for data hiding that are addressed in this dissertation are now
summarized.

1. The embedded host should be perceptually indistinguishable from the original host.

2. The embedding techniques should allow for hiding significantly larger amounts of
data than that required by the traditional digital watermarking problem.

3. The hidden data must be secured by an encryption key, so that unauthorized
retrieval becomes impossible without its knowledge.

4. The algorithms developed should exhibit demonstrable robustness against lossy
compression.

S. The methodology should have sufficient flexibility to achieve a wide range of trade-
off between the amount of data to be hidden, the level of robustness required, and the
amount of perturbation to be tolerated by the host in the process of embedding.

6. The methodology should allow for adaptivity based on perceptual characteristics of
the human visual system.

7. The methodology should be sufficiently generic so that both compressible and
incompressible sources can be embedded.

8. Authorized retrieval will be considered both with and without the knowledge of the
original host.

The hosts considered in our experiments are images and video. Generalized algo-
rithms are presented for hiding text or an image inside a host image, as well as image/video
sequences embedded within host video sequences. In general, however, the proposed algo-

rithms may be extended to other multimedia sources.
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1.4 Main Contributions

In order to accomplish the above objectives, we have developed several new techniques
for robust data hiding in images and video. The main contributions of this thesis are towards
enhancing the functionality of data embedding, and to the development of robust methods
for hiding. The emphasis of these techniques is to improve both the quality of the embedded
data and the quantity and quality of the recovered signature data. The proposed methods are
based on hiding the data in a transform domain, such as the discrete wavelet transform or
discrete cosine transform, and use lattice coding schemes for robust recovery. The capability
to hide large quantities of data enable multimedia hidden communication. Compared to the
state-of-the art techniques in digital watermarking, which can embed data at about 1%, the
proposed techniques can embed images up to 25% of the host data size. Since we can embed
a significantly larger number of bits for a given host, it is possible to make the embedding
resistant to typical signal/image processing operations such as compression. The main con-

tributions of this research are summarized in the following.

1.4.1 Functionality

Hiding large amounts of data

Much of the prior work published on watermarking has used signature data which is
only a small fraction of the size of the host, with data rates on the order of less than 1%. Typ-
ically, signatures include pseudo-random noise sequence or binary images. We propose
methods that can embed signature data as much as 25% of the host data size, for applications
such as image-in-image hiding or video-in-video hiding. In data hiding, the faithfulness of
the embedded data to the original host is important. The proposed algorithms are very resis-
tant to compressions, handling up to 90% JPEG compression. We present several techniques

for large signature data hiding in Chapters 3, 4, 5 and 6.

No-host signal recovery
An important issue in watermarking and data hiding is hidden data recovery when the

original host is not available during the extraction procedure. The basic idea of the no-host
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signal recovery algorithm is to split the region of host signal coefficients in a transform
domain, such as the discrete cosine transform (DCT). The signature data is then inserted
into a specified region of host signal data. A private key can be used to specify the host sig-
nal coefficients which are affected by the signature data insertion. We present techniques in

Chapters 5 and 6 which enable no-host recovery.

Lossless/lossy recovery

Another equally important issue not well addressed in current literature is lossless
recovery of the message or signature data. Many of the existing algorithms can not handle
any degradation of the embedded signal (See [5,68]). As mentioned earlier, lossless recov-
ery of hidden data is similar to data encryption. This enables interesting applications
including embedded control signals, text messages in multimedia, and smart images that

can self-correct. We demonstrate lossless recovery of the message data in Chapter 7.

1.4.2 Robust Embedding Methods

In enabling the above functionality, we have developed new and robust image and

video data embedding methods.

An extended spread spectrum technique

We propose an extended spread spectrum technique which introduces redundancy and
spreads the signature information in the wavelet domain. This enables robust recovery of
the signature even under lossy compression. The proposed scheme’s focus is on hiding the
signature mostly in the low frequency bands of a wavelet decomposition, and stable recon-
struction can be obtained even when the images are highly degraded. An implementation of
this method is described in Chapter 3.

Use of Lattice Codes for Error Resilience

We suggest a methodology for embedding data which is coded using multidimen-
sional lattice structures. The use of lattice codes enable resistance to lossy compression.
The scheme adopts a vector-based approach to hidden data injection, where the lattice con-

sists of all integer n-tuples with some constraints. Embedding the data amounts to a pertur-
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bation of vectors in a high dimensional space. When the embedded data is degraded by
compression, it is equivalent to adding noise to the already perturbed coefficients. The true
perturbations that represent the signal data are then estimated from the degraded embedded
host. We present data embedding methods using lattice codes in Chapters 4, 5, 6 and 7.

Adaptive Embedding

A simple adaptive embedding procedure using texture masking and a user-define quan-
tization matrix of signature data, is suggested. Since the signature data is spread based on the
texture properties of the host image blocks, this results in a high quality embedded signal. A
texture masking technique considers the properties of the human visual system for better
watermarked image quality. The underlying assumption is that the human visual system is
less sensitive to changes in highly textured regions as opposed to changes in low frequen-
cies. The signature data is first quantized and lattice codes are assigned to these quantized
signature coefficients. These coded coefficients are then embedded in the host signal. We
present this method of texture masking with user-defined signature quantization in Chapter
5.

Vector Embedding

A novel method for data hiding in the transform domain is presented in Chapter 6.
Many data hiding methods based on the wavelet transform insert data by the merging of
wavelet subband coefficients. In contrast, in vector embedding, a new signal for embedding
is first constructed using the host and signature data. This signal captures the non-redundan-
cies in the signature in comparison with the selected host data, and as such requires less
bandwidth to hide. Consequently, this procedure results in a better signal embedding and
reconstruction for a given bandwidth. The technical details of vector embedding is presented

in Chapter 6 and some applications are discussed in Chapter 7.
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1.5 Organization of the Thesis

This dissertation is organized into eight chapters. Chapter 2 discusses the general
requirements on data hiding and digital watermarking. An overview of related research and
a brief survey of currently available commercial and public domain software is provided.

Chapter 3 describes an approach to embedding gray scale images using a discrete
wavelet transform. The signature wavelet coefficients are distributed in the corresponding
subbands of the host. The proposed scheme enables signature images to be as much as 25%
of the host image data, and hence could be used both in digital watermarking as well as in
image/data hiding. The proposed scheme provides a simple control parameter that can be
tailored to either hiding or watermarking purposes, and is robust to operations such as
JPEG compression. Preliminary results from this chapter has appeared in [22].

In Chapter 4, we propose a robust data embedding scheme which uses noise resilient
channel codes based on a multidimensional lattice structure. A trade-off between the quan-
tity of hidden data and the quality of the watermarked image is achieved by varying the
number of quantization levels for the signature and a scale factor for data embedding.
Experimental results show that the watermarked image is transparent to embedding large
amounts of hidden data, and the quality of the extracted signature is high even when the
watermarked image is subjected to up to 75% Wavelet compression [39] and 85% JPEG
lossy compression. A private key-based scheme can be used to make unauthorized retrieval
practically impossible, even with the knowledge of the reconstruction algorithm. This
research has been published in [23,24,83].

Chapter S presents a new technique for embedding image data that can be recovered in
the absence of the original host image. The data to be embedded, referred to as the signa-
ture data, is inserted into the host image in the DCT domain. The signature DCT coeffi-
cients are encoded using a lattice coding scheme before embedding. Each block of host
DCT coefficients is first checked for its texture content and the signatures codes are appro-
priately inserted depending on a local texture measure. Experimental results indicate that

high quality embedding is possible, with no visible distortions. Signature images can be
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. recovered even when the embedded data is subject to significant lossy JPEG compression.
The content of this chapter has appeared in [25,26].

In Chapter 6, a different and novel method for data embedding is presented. There are
two main steps in the embedding procedure. The first step creates a new signal, referred to
as the B-signal, which is generated based on the host and signature data. Then, the B-signal is
embedded into the host coefficients following the method detailed in Chapter S. This vector
embedding technique adds information about the signature signal that cannot be estimated
directly from the host, and as such adds robustness to the overall scheme. Lossless recovery
of the signature signal is possible as well.

In Chapter 7, we demonstrate lossless signature recovery and video-in-video embed-
ding using the methods described in the previous chapters. We also describe methods for
embedding images and video into video which can be recovered following MPEG compres-

sion. Chapter 8 concludes with some discussions and future research directions.
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Chapter 2
Data Hiding and
Digital Watermarking

Motivated by the overwhelming need for internet data security, digital watermarking
has recently emerged as an important area of research in multimedia data processing. Digital
watermarking is a technology being developed to ensure security and protection of multime-
dia data. The purpose of digital watermarking is not to restrict use of multimedia resources,
but to facilitate data authentication and copyright protection. Data hiding can be considered
as a generalization of watermarking wherein large amounts of data are embedded into 2 host
medium. In this chapter we provide an overview of the main issues in data hiding and water-

marking and give detailed review of related work.

2.1 Main Issues

Data Authentication

There is an extensive literature on hiding signature data for ownership and authentica-
tion [12,14,16,34,31,40,51,58,75,87,90,96,98,103,118,123,125,126]. Primary concerns are
protection of intellectual property rights, and checking and tracking content manipulation.
Robustness of the watermarking process to signal processing operations performed on the

watermarked data is one of the main issues.
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Quality of the embedded data

Another important issue in data hiding is the perceptual quality of the embedded data
when the signature data is embedded into the host data. It is desirable to minimize the per-
ceived visual distortion of the embedded data, particularly in the case of embedding large
amounts of data into the host.

The quality of the reconstructed data depends on various factors. There is an obvious
trade-off between the quality and quantity of the signature data that can be inserted into the
host without causing significant perceptual degradation. Our proposed algorithms can
embed up to 25% of the host data size and can recover the embedded data even under signif-

icant JPEG compression.

No-host recovery

If one has access to the original host data, the recovery procedure simply determines, in
some sense, the difference between the received and the original data. However, no-host
recovery is substantially more challenging. In no-host recovery, the original host data is not
available to the receiver. For this reason, the methods that can support no-host recovery have

a wider spectrum of applications than just data authentication.

2.2 General Requirements

Several constraints affect the embedding process: the quantity of data to be hidden, the
robustness from attacks on the embedded data, and the degree to which the data must be
immune to interception or removal by unauthorized users. Obviously, different applications
will have different requirements [31,91,113]. In [31], Cox outlines a set of requirements for
digital watermarking. Since these are generally applicable to data hiding as well, we give a

brief overview of these requirements.

2.2.1 Unobtrusiveness

Digital watermarks should be perceptually invisible, but readable by a computer algo-
rithm. In many applications, such as copyright and usage tracking, embedding metadata or
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additional information, the algorithms must embed data without affecting the perceptual quai-
ity of the underlying host signal. In some applications, though, perceptually detectable water-

marks have been used.

2.2.2 Robustness

Digital information is readily manipulated and modified using computers. Operations
that damage the embedded host signal may also damage the message data. Furthermore,
unauthorized users may attempt to modify the host signal to thwart detection of the embedded

data. The following are some of the typical operations:

Common signal processing operations : The watermark should be recovered even if
common signal processing operations have been applied to the embedded data. This may
include low/high pass filtering, dithering, compression, and A/D and D/A conversion. In this

thesis, we focus mainly on robustness to JPEG and MPEG compressions.

Common geometric distortions: The watermark should be extracted following any
geometric distortions including rotating, translating, cropping, and scaling of the data. Usu-
ally, pixel based embedding techniques are not robust against these kinds of disturbances.

Subterfuge attacks (Collusion and forgery) : The watermark should be protected
against collusion by multiple individuals who each posses a watermarked copy of the data.
That is, the watermark should be robust to combining copies of the same data set in order to

destroy the watermarks.

2.2.3 Universality

The same digital watermarking algorithm should apply to all other media under consid-
eration. Most digital watermarking methods satisfy this requirement. However, data hiding
methods which aim at embedding significant amount of data typically make use of the spe-

cific properties of the medium.



16 Chapter 2. Data Hiding and Digital Watermarking

2.2.4 Unambiguous

The watermark should unambiguously identify the owner. Furthermore, the accuracy of
the owner identification should degrade gracefully in the event of an attack.

Much of the recent research on digital watermarking address issues related to copyright
authentication and protection. The data used to represent a digital watermark is a very small
fraction of the host source. Typical signature data embedded into the host include pseudo-
random 1-bit numbers, trade-mark symbols, and binary images [31,53,58,59,87,91]. Multi-
ple watermarks is another important issue in case of data authentication [34,35,36]. Issues of
interest in multiple watermarking include identifying the original owner(s) and the progres-
sive degradation of the original watermarks. In this thesis, we will only be concerned with a

single data embedding step and will not consider multiple embedding into a given host data.

2.3 Visible vs. Invisible Watermarking

Watermarking of image data could be visible, as in a background transparent signature
[85,98], or could be perceptually invisible [34,35,36,53-57,60,87,90,102,118,123,125,126,
127]. A visible watermark acts like a deterrent but may not be acceptable to users in some
contexts. In order to be effective, an invisible watermark should be secure, reliable, and
resistant to common signal processing operations and intentional attacks. Therefore, most
digitally watermarked images are obtained by invisibly hiding signature'information into the
host image. The signature information is recovered by an appropriate decoding process. The
challenge is to simultanecusly ensure that the watermarked image be perceptually indistin-
guishable from the original, and that the signature information be recoverable even when the
watermarked image has been compressed or transformed by standard image processing

operations.

2.4 Spatial vs. Frequency Domain Embedding

Watermarking methods can be classified into two broad categories. The first class of

techniques is based on embedding data in the spatial domain [16,102,115]. Spatial domain
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methods usually modify the least significant bits of the host image, and are easily affected by
signal processing operations. The second class of techniques are based on data injection in a
transform domain. The discrete cosine transform [31,60,90,102,118,123] and the discrete
wavelet transform [87,125,126,127] are two of the frequently used transformations.

2.4.1 Spatial Domain Methods

Bender et al. [16] propose a spatial domain approach to data hiding at varying bit rates.
The low-bit encoding emphasizes resistance to unauthorized data removal. Their statistical
approach, which is referred to as the patch work, is based on a pseudo-random statistical pro-
cess which embeds one bit per pixel data in a host image. At high bit-rates, such methods tend
not to be immune to image modifications. The most common form of high bit-rate encoding
is simply replacing the least significant bit (LSB) of the host data with the signature data.

The algorithm proposed by Van Schyndel ez al. [115] is based on least significant bit
manipulation. In this method, the signature data is added to a pseudo-random sequence, mak-
ing it more difficult to decode, and thus offering inherent security.

Another technique, developed by O’Ruanaidh et al. [102], uses a block-mean approach
with bi-directional coding. The mean of each block is increased to encode a ‘1’ or decre-
mented to encode a ‘0°. The number of bits which may be encoded equals the number of
blocks. In general, such spatial domain approaches are not robust to simple image processing
operations as the embedded information is simply stored in a particular location of the host

image data.

2.4.2 Frequency Domain Methods

Most of the recent research on watermarking emphasize the transform domain approach.
In general, a digital watermarking in the transform domain is more robust (to signal modifica-
tions) than spatial domain methods. The basic idea in these transform domain embedding
methods is to perturb the host transform coefficients using the signature information. Since
these changes are no longer localized in the spatial domain, the resulting embedded data is

more robust to operations such as signal compression. In general, the low frequency compo-
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nents of a signal (such as an image) contain most of the host signal energy. Changes to the
host signal’s low frequency components may distort the signal or make such changes other-
wise quite perceivable. The high frequency components, on the other hand, could be easily

removed through signal processing operations.

2.4.3 Discrete Cosine Transform (DCT)

The discrete cosine transform is widely used in signal compression [17,60,90,118,123].
The primary reason being that the DCT is quite effective in signal energy compaction. For a
large class of images the energy compaction using DCT is almost as good as using the opti-
mal Karhunen-Loeve transformation [49,67,123]. The current ISO standards JPEG [124]
and MPEG [2,3,84,64,65,66] utilize the DCT.

Cox et al. [31] propose the spread spectrum coding method for digital watermarking
using the DCT transform coefficients for data embedding. The basic idea is to spread small
amounts of data across the entire frequency spectrum of the host data. This is discussed in
more detail in Section 3.1. Many of the current watermarking techniques are variations of
this spread spectrum coding method [27,53,83,90, 95,109].

While the original spread-spectrum method proposed in [31] is based on the DCT of the
whole image, block DCT-based embedding methods appear to be quite popular
[17,60,61,90,91,118,123,129]. These methods, similar to JPEG coding, typically use 8x8
blocks of pixels. Koch ez al. [129] propose an embedding algorithm based on the block
DCT. A pseudorandom subset of blocks are chosen, and a triplet of midrange frequencies are
slightly altered to encode a binary sequence. Such a scheme provides reasonable results on
average, although a more image dependent scheme could provide better quality as well as
robustness. Huang et al. [61] propose an adaptive image watermarking scheme based on
visual masking under the DCT domain. After dividing the host into three different block
type categories, they embed random noise into the three low frequency components of each
block corresponding to the given block types. A similar image-adaptive watermarking
scheme using visual models is proposed by Podilchuk et al. [91,92]. DCT based video

watermarking using perceptual information is proposed by Swanson et al. [109-114]. One

-
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significant difference in Swanson’s approach is that the visual model results in a frequency
weighting dependent only on the basis function, and does not adapt to local image character-
istics.

Extending these to video, Hartung ez al. [53-57] propose digital watermarking of raw
and compressed video. They used spread spectrum in the DCT domain. The signature is a
pseudo-random noise sequence that could be inserted either into an uncoded video stream or

into an MPEG bit stream.

2.4.4 Discrete Wavelet Transform (DWT)

During the last decade, multiresolution representation using discrete wavelet transforms
has emerged as a strong alternative to the DCT [11,19,62,76,77,100,105,106,117,122]. A
given signal is decomposed into successive approximations at different scales using a class of
self-similar filters. Efficient implementations of such decompositions now exist and the new
JPEG-2000 standard will replace the DCT with the DWT.

Several watermarking algorithms using the DWT have been proposed recently
[22,87,125,126,127]. Ohnishi et al. [87] propose an embedding algorithm in which binary
signature data is inserted in the wavelet transform domain. They use three wavelet coeffi-
cients in the high frequency bands and calculate the absolute value of the difference between
the maximum and minimum coefficients from the three bands. This absolute value is used for
embedding a signature into a host using the Haar wavelet transformation. However, experi-
mental results indicate that this method is not very robust to signal compression.

Xia et al. [126] propose a multiresolution watermarking method using a wavelet trans-
form based encoding that is robust to wavelet transform compression and digital halftoning.
Since their target application is copyright protection, they used pseudo-random sequences as
signature data. In [127], they extend this work to both lossless and lossy compression. After
selecting three coefficients of the low-low band in the wavelet decomposed image, the
selected coefficients are ordered by magnitude. The dynamic range of these coefficient values
is then partitioned into M intervals. The method supports multiple-bit embedding schemes in

a large number of intervals.
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Wang et al. [125] propose WaveMark, a wavelet-based multiresolution digital water-
marking system for color images. The algorithm uses an error-corrective coding scheme to
provide robust watermarking of digital images. The method does not require the original
image for authentication. The wavelet transform of each color band is partitioned into 10x10
blocks, and the inner 8x8 sub-block of each block is used to hide a 64 bit watermark code.
The embedding mechanism alters the lower bits of the block borders to code ‘0’ in order to

assist the decoding process following the wavelet transform of a 10x10 block.

2.5 Visual Masking

As mentioned earlier, it is often desirable to have the minimum amount of distortion
while embedding the signature information [21,25,70,81,90,110,118]. In the case of images,
visual masking techniques have been introduced that are adaptive to the local image proper-
ties. Swanson et al. [110] propose visual masking techniques based on models of the human
visual system. They use both spatial and frequency masking models to embed the signature
data. For spatial masking, they use a low bit rate image coding model that determines a tol-
erable error level for each pixel value. For frequency masking, they compute a contrast
threshold for each frequency as a function of the frequency, the masking frequency, and the
masking contrast. These masking thresholds are used to predict if the changes are perceiv-
able, and thus adaptively embed the signature information.

Similar visual masking techniques have also been explored by other researchers. Piva et
al. [90] propose a visual masking procedure in the spatial domain to achieve data water-
marking. Watermarking is performed by exploiting the masking characteristics of the human
visual system, to ensure watermark invisibility. Tao et al.[118] propose an algorithm which
assigns a noise sensitivity label to each spatial region and embedded data with different
labels according to the block DCT. Their six noise sensitivity indices exploit various mask-
ing effects of the HVS. Podilchuk et al. [92] propose two watermarking techniques based on

utilizing visual models which have been developed in the context of image compression.
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2.6 Embedding Multimedia Data

While much of the initial work on watermarking was on embedding pseudo-random
noise sequences as signature data, some of the recent work address embedding multimedia
data, such as image, video, and audio into video sequences [54-56,80,83,95,96,109-114].
Swanson et. al. [109] present a scheme for hiding compressed video streams into video
frames. They are able to embed up to 2400 bits in a 240x320 video frame using 2 bits per 8x8
block. The data is embedded by linear projection of a pseudo-random sequence. Then, the
projected data is quantized and perturbed. However, it is difficult to retrieve the hidden data
from the lossy (compressed) watermarked image.

Mukherjee et. al. [83] present an interesting approach to hiding audio in compressed
video. Their algorithm, based on multidimensional lattices, works in the DWT domain, typi-
cally hiding 8 Khz speech data into QCIF video sequences. The host video is wavelet trans-
formed frame by frame, and vectors of coefficients are perturbed using lattice channel codes
to represent hidden vector quantized speech. The embedded video is subjected to H.263 com-
pression before retrieving the hidden speech from it. The retrieved speech is intelligible even

with significant compression of the embedded video.

2.7 Signal Recovery without Original Host

The key to any data hiding method is the ability to recover a high quality rendering of
the embedded watermark. More specifically, the embedded data may be considered as infor-
mation transmitted on a communication channel and corrupted by strong interference and
channel defects. Bit-wise or noise dependent methods read the watermark without requiring
the original host. However, these methods are vulnerable to small changes in the embedded
data and thus yield relatively weak watermarks. Many of the prior works in digital water-
marking assume that the host source is available [17,34,22,31,53,115].

Other researchers have proposed methods that do not require the original host for hidden
data recovery [22-25,53,83,109]. For example, Swanson er. a/ [109] use a perturbation coeffi-

cient in the data hiding channel which can be easily extracted using channel coding schemes.
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Each 8x8 block of host DCT coefficients is projected onto a pseudo-random direction, quan-
tized, and then perturbed by the signature data. The extraction procedure does not need the
original data. The authors demonstrate data hiding for video-in-video. Their scheme can

hide about 300 bytes per frame of a 240 x 320 video sequence.

2.8 Other Related Work

Some recent papers have also considered digital watermarking in color images [46,69].
Kutter [69] proposes an amplitude modulation scheme wherein signature bits are embedded
by modifying pixel values in the blue channel. The blue channel is chosen as the human
visual system is less sensitive to blue than other primary colors. Additionally, changes in
regions of high frequency content and high luminance are less perceptible, and thus are
favorable locations for data embedding. Robustness is achieved by embedding the signature
several times at many different locations in the image. Fleet et al. [46] propose an embed-
ding scheme using the S-CIELAB, a well-known standard for measuring color reproduction
errors. They embed amplitude-modulated sinusoidal signals into the yellow-blue color band
of an opponent-color representation scheme.

Another area where data hiding is useful is in the authentication of printed documents.
Inexpensive computers and easy access to high quality printers has resulted in an increase in
the forgery of printed documents, including currency. Text 'document protection is also an
important issue [21,70,81]. For copyright protection of electronic text documents, line space
encoding, word space encoding, and noise placement encoding are being considered. A
detailed review of data hiding for text and printed documents is beyond the scope of this the-

sis.

2.8.1 Commercial Software

Recently, there have been many commercial software packages for copyright authenti-
cation [1,4-9,13,20], some of which could also be used for multimedia data hiding. Johnson
et al. [41,68] provide a comparative evaluation of several different commercial software.

Most of these methods employ variations of least-significant bit encoding for data embed-
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ding. This may introduce significant changes in the case of high quality (24-bit) color images.
S-Tools [20], a steganography tool, reduces the number of colors while maintaining the image
quality, so that the bit changes do not drastically change color values. The resulting image is
in a non-standard file format. Jpeg-Jsteg [1] creates a so-called JPEG stego-image using a
message to be hidden and a lossless embedded image. The JPEG compression coding scheme
is modified for 1-bit steganography in the output files, which are composed of lossy and non-
lossy sections. The software combines the message and embedded images using the JPEG
algorithm to create lossy JPEG stego-images.

Another shareware program is StegoDos [6]. This program uses the least-significant bit
method to hide messages, and is less successful than the other tools mentioned above. The
extracted message contains much more data than the original message since the extracting
procedure does not identify the end-of-file character for the embedded message. The White
Noise Strom [13] uses spread spectrum technology in combination with LSB encoding to
hide the signature data.

Technical details of these commercially available software utilities are generally not
available to the public. Furthermore, the embedding algorithms are generally not very robust.
Even if the software is capable of hiding a large quantity of data, the embedded data can be

easily removed with simple signal processing methods.

2.9 Summary

Digital watermarking and data hiding has been a very active research area. A majority of
the previous research work is related to digital watermarking for copyright authentication.
Methods for embedding data both in the spatial and in the frequency domain have been
explored. However, most of these existing algorithms do not support large amounts of data
hiding. In the following chapters, we introduce several new methods which enable large
quantities of data hiding in images and in video. The proposed algorithms are robust to
image/video compression, and one can recover the hidden data without requiring the original

host.
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Chapter 2. Data Hiding and Digital Watermarking
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Chapter 3
Image Hiding in the Wavelet Trans-

form Domain

In general, developing embedding techniques that are robust to simple image processing
operations are at the core of digital watermarking and data hiding. We are primarily interested
in techniques that result in invisible watermarks. Quantity of the data that can be embedded
without much perceptual distortion to the host is an important issue. In this chapter, we
present a data embedding scheme that is suitable for both watermarking and data hiding.
While watermarking requires robustness under image manipulation, data hiding aims at hid-
ing large amounts of data with little perceptual distortion to the host.

We consider here the problem of hiding images in images. We specifically address
robustness to data compression. Lossy compression techniques, such as JPEG, typically affect
the high frequency components. This is also true with most perceptual coding techniques
based on the human visual system. For these reasons, a digital signature should be placed in
perceptually salient regions of the host data. For techniques based on frequency domain mod-
ifications, this implies embedding the signature in mostly low frequency components. Insert-
ing signatures in the low frequency components creates problems if one is interested in
invisible watermarks. This is particularly true in data hiding applications where the data to be
hidden could be a significant percentage of the original data.

We present a data hiding method that allows large scale image to image embedding that
is robust to various compression techniques and low-pass filtering. The data is embedded in

the wavelet transform domain. We demonstrate that distributing the signature image informa-
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tion in the wavelet transform domain is robust to JPEG [124] and wavelet lossy compression
[39]. In the wavelet transform, high-detail image components afe projected onto shorter basis
functions with high resolution, while the low-detail components are projected onto longer
basis functions and lower resolution, thus establishing a trade-off between time and fre-
quency. Typically, for robustness, the signature data is embedded into the low frequency
bands in the wavelet transform domain. The proposed scheme focuses on hiding the signature
information mostly within the low-frequency DWT bands, and stable reconstruction of the
signature image can be obtained even when the images are transformed, quantized (as in
JPEGQG), or otherwise modified by enhancement or low pass filtering operations [42,67].

Another important feature of the proposed method is that it enables large amount of data
hiding with little perceptual distortion to the host image. The method can embed a signature
that is as much as 25% of the host image size. A possible application of this large data
embedding is in secure hidden communications. Note that the requirements for data hiding
are quite different from those for watermarking. In data hiding, the faithfulness of the embed-
ded data to the original host is more important than the consequences of unauthorized manip-
ulations of the embedded data, which are not of concemn.

In recovering the signature image, it is assumed that the original host image is available.
For digital watermarking applications, which typically require embedding a small amount of
signature data, further robustness to image processing can be achieved by introducing redun-
dancies in the hidden data. In Chapter 6 we propose another embedding method that does not
require the knowledge of the original host in signal reconstruction. In this method, using the
given host and the signature data, a new signal for embedding is computed. This computation
is based on combining the coefficients from different vector spaces in the wavelet transform
domain, and hence the embedding method is referred to as the vector embedding, in contrast
to the scalar embedding presented in this chapter.

The next section reviews the early work of Cox and his group [31] on spread spectrum
based embedding methods. These methods were initially developed for the purpose of
authentication and watermarking. Section 3.2 discuss the review and the terminology of

wavelet transformation. A wavelet transform based embedding and recovery procedures
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(MDWT) are discussed in Section 3.3 and Section 3.4. Experimental results are presented in

Section 3.5, and we conclude with discussions in Section 3.6.

3.1 Spread Spectrum Embedding

In the spread spectrum technique for digital communications [93], one transmits a nar-
row band signal over a much larger bandwidth such that the signal energy present in any sin-
gle frequency is undetectable. The main idea behind the spread spectrum technique is to
spread the signature data over a larger frequency range. Spreading the watermark throughout
the spectrum of an image ensures security against unintentional or intentional attacks, and the
location of the watermark is not obvious.

Spread spectrum signals used for the transmission of digital information are distin-
guished by the characteristic that their bandwidth # is much greater than the information rate
R (in bits/second) [93]. That is, the bandwidth expansion factor B, = W /R for a spread
spectrum signal is much greater than unity. The large redundancy inherent in spread spectrum
signals is required to overcome the severe levels of interference that are encountered in the
transmission of digital information over some radio and satellite channels. A second impor-
tant element employed in spread spectrum communication is selecting the spectrum in
pseudo-random manner, which makes the signals appear similar to random noise. Thus, only

the intended receivers can decode the signal.

3.1.1 Cox’s Work [31]

The spread spectrum method is used for hiding a signal by transmitting it at low power
and making it difficult for an unintended receiver to detect the hidden signal in the presence
of background noise. Cox et al. [31] were among the first to propose a technique for digital
watermarking using spread spectrum, and embedded the data in the DCT domain. In their
embedding technique the signal energy is spread over many frequency components so that the
energy in any one component is small and likely to be undetectable.

Consider a host signal coefficient f(x) . A signal coefficients s(x) is then added to f(x)

to result in the embedded coefficient
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f'(x) = f(x)(1 +a -s(x)) (3.1
where f(x) and s(x) are the x-th DCT coefficients of the host and signature, respectively.
Typically, in watermarking applications, s(x) is a pseudo-random noise sequence where
each coefficient is chosen independently according to N(0, ). N(0,1) denotes a normal distri-
bution with zero mean and variance 1. The scale factor a determines how densely the signa-
ture information is embedded into the host image. In selecting a, there is a clear trade-off
between the quality of the watermarked image and the robustness of the watermark to
changes in the embedded host. Typically, a is in the range 0.05-1.0 [31].

The spread spectrum technique is quite robust to simple image processing operations,
and one can easily detect the similarity between the recovered and original signature image
for copyright authentication. Much of the recent work on digital watermarking for data
authentication [27,43,55,75,83,90,96,101] is influenced by Cox’s initial work.

The recovered watermark is authenticated using standard statistical correlation. Let
s(x) be the original watermark and let s*(x) be the recovered watermark. Then the similar-
ity of s(x) to s*(x) is defined as [31]

Y s*(x)s(x)

S=x (3.2)
3 (s*(x))?

X
To match s*(x) and s(x), one determines the similarity measure S with a threshold value.
This is a classical decision-estimation problem which attempts to minimize both the rate of

false negatives and false positives.

3.1.2 Other Related Work

Several recent papers {27,31,55,83,90,95,96] further investigate spread spectrum
method for authentication purposes. For example, Piva et al. [90] present a DCT-based water-
marking algorithm using spread spectrum embedding. In their scheme, signature data is
embedded in selected host coefficients. The watermark is a M-length pseudo-random

sequence X = {X;, X,, ..., X)y} - Consider an N x N block of DCT coefficients from the
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host image. The N x N DCT coefficients are reordered into a zig-zag scan, and the first
M + L coefficients are selected to generate a vector
. T={tpty ottt st ez o lLemld-
The watermarked vector is then computed as
T = {tp byt 4t g o P}

where t'[ . ; =t ;to- ItL+iI -X;, 1 = 1,...,M. In their algorithm, the random noise
signature sequence X; is inserted into the host DCT coefficients.

Hartung et al. [55] propose an embedding algorithm using the direct-sequence spread
spectrum scheme. They consider binary signature sequence, then spread this discrete signal
by a large factor c, called the chip-rate, to obtain the spread sequence. Consider the j-th

watermark coefficient 3. Then the spread sequence b; is obtained by b; = 3, where

jre,<i<(@+1)-c..Let {h;} denote the host signal coefficients. Then the watermarked

coefficients are obtained by h; = h;+a -b;-p;, where p; is a pseudo-random noise

sequence used for encryption.

Qiao et al. [95] propose a watermarking scheme which is similar to that of Hartung [83].
Essentially, their method expands the watermark » times. The expanded signature bits are
inserted into the n-th value of the bit stream of the modified MPEG coded bits, which are then
encrypted by the data encryption standard (DES) with KEY [86]. However, the bits are
inserted into the MPEG bit stream directly. Some of the more recent work on the use of digi-
tal communications technology for data embedding can be found in Chen et al. [27], Muker-
jee et al. [83] and Swanson et al. [109].

3.2 Discrete Wavelet Transform: Terminology

A brief overview of the wavelet transform and the terminology used, is now given. We
use the notation and terminology from Mallat [76,77], Ogden [117], and Vetterli [122]. Let Z

denote the set of integers and let R denote the real numbers. The square-integrable, one-
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dimensional function f(x) includes a vector space of measurable LZ(R) .For f(x) e LZ(R)
and g(x) e LZ(R) , the inner product of f(x)and g(x) is written as

(g(x), f(x)) = [° g(u)f(u)du
and in two-dimensions, f(x,y) € LZ(RZ) and g(x,y) € LZ(RZ) , the inner product of
f(x, y) and g(x, y) is written as,

(8(x,y), £, y)) = [7_[° f(x, y)g(x, y)dxdy.

3.2.1 Wavelet Transform

Let AZ,- be the operator which approximates a signal at a resolution 2j, jeZ. If
Azjf(x) is the approximation of some function f(x) at the resolution 2 , then A 2,-f(x) is not
modified if we approximate it again at 2. Thus, A2j is a projection operator on a vector
space sz cL? (R). The vector space V ,i can be interpreted as a set of all possible approxi-~

. . j . . 2
mations at the resolution 2’ of functions in L (R).

Among all the approximated functions at 2 , Azjf(x) is the function which is most sim-

ilar to f(x).
VE(x) €V, llg(x) ~ Fl 2 A £(x) - £0)] -
Hence, the operator Azj f(x) isan onhogonal projection on the vector space V NE
The approximation of signal at a 2J *! contains all the necessary information to com-
pute the same signal at a smaller resolution 2’ . Further, the approximation A 5 f(x) of a sig-
nal f(x) can be characterized by 2' samples per unit length.

We noted that the approximation operator A 5 is an orthogonal projection on the vector
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space V e Let (sz)j <z be a multiresolution approximation of LZ(R) . Then, there exists a

unique function ¢(x) € LZ(R), called a scaling function, such that if we set
b,,(x) = 2o(2'x) for j e Z, then (Jz‘%zj(x—z‘jn) , is an orthonormal basis of
ne

A" 5 A discrete approximation of f(x) can be expressed as,

Agt = ((E@) » 0@ )

eZ

- - - . . d .
where " @’ is the convolution operator. Since ¢(x) is a low-pass filter, this A zjf can be inter-

preted as a low-pass filtering of f(x) followed by a uniform sampling at the rate 2. The scal-

ing function ¢(x) forms a very particular low-pass filter since the family of functions
(Aj 27 d_;(x— 27 n)) is an orthonormal family.
2 neZ
The difference information between the approximation of a function f(x) at the resolu-

tion 2t and 2 is called the detail signal at the resolution 2. LetO 5 be the orthogonal

complement given by

O, ,+V,=V

2 2 i+l 3.3)

The detail signal belongs to the vector space O 5 To compute the orthogonal projection of a
function f(x) on Ozj , we need to find an orthogonal basis of O NE The basis can be built by
scaling and translating a function y(x).

Let (sz)j ez be a multiresolution approximation of LZ(R) and ¢(x) be the corre-

sponding scaling function. The function («/ 273" 1<1>2,-+,(x—2_j - 1k))k 2 is an orthonor-
€
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mal basis of szﬂ . The function ¢ Zj()(-Z_J-n) is a member of Vz,- which is included in

V2j+ 1-
When computing the inner products of f(x), we have
(E, 6,(w=270)) = 3 (0, (w), ¢(u— (k—2m))) - (Fw), by (u—27 M)y .
k=-w

Let H be the discrete filter whose impulse response is given by h(n) e (d)z_l(u), ¢(u—n)),

Vn € Z. Furthermore, H is the mirror filter with impulse response fl(n) = h(-n). Let
H(®) be the Fourier series defined by
0 _.
H(@) = ¥ h(n)e ™ (3.4)
n=-—w

which satisfies two conditions, [H(0)| = 1 and |H(®)|* + [H(e +m)|> = 1. Hence, the
Fourier transform of a scaling function is defined by

(o) = I'[ H(2 ") (3.5)
p=1
The impulse response of the filter G is related to the impulse response of the filter H by
| -
gn) = (-1)' " "h(l-n),
where G is quadrature mirror filter of H, and is a high-pass filter.

The Fourier transform of the orthogonal wavelet w(x) is given by

¥(x) = G(0/2)(0/2) with G(o) = ¢ “H(e + 7). Let V(%) = Py(@x) denote

the dilation of y(x) by 2j . Then (d Z—jwzj(x—z—jn)) 7 is an orthonormal basis of 02,-

ne

5 o . . 2
and ( 2 wzj(x 2 n))(n,j) <z is an orthogonal basis of L“(R).
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— Ag,»ﬂf —r— | H —>@ — Adf
= (5] > @) — by

FIGURE 3-1. General tree-structured wavelet filter bank.

Let P, be the orthogonal projection on the vector space 02,- . Py f(x) yields to the
2 2

detail signal of f(x) at the 2j . It is characterized by the set of inner products

D,f = ((Fw), w(u—27n))

neZ

where Dzjf is called the discrete detail signal at 2% It contains the difference of information

between A;j_lf and Agjf.

For any J > 0, the original discrete signal A?f measured at a resolution of 1 is repre-

sented by

d
(Az"f’ (Dzjf)—J <j S—l) )
This set of discrete signals is called an orthogonal wavelet representation, and consists of the

. . d . . j
reference signal at a coarse resolution Azj_.f and the detail signals at resolution 2' for

—J <j<-1 (see Figure 3-1). This may be interpreted as a decomposition of the original sig-

nal using an orthonormal wavelet basis or as a decomposition of the signal into a set of inde-

pendent frequency channels. We can compute the detail signal Dzjf by convolving A;,-f with

the filter G and retaining every other sample of the output. The orthogonal wavelet represen-

tation of a discrete signal A?f can therefore be computed by successively decomposing

A f into A%f and D,f.



34 Chapter 3. Image Hiding in the Wavelet Transform Domain

Columns

5] - @ N D;—f (HH band)

d 2
At N @ ——> D3f (HL band)

¢
®

|

!

!
¢
®
|
!

= 1
G|— @ — DZ,-f (LH band)

A — @ —> Af (LL band)

FIGURE 3-2. A schematic of the 2-D wavelet decomposition. Four subbands are obtained:
the Low-low (LL), Low-high (LH), High-low (HL), and High-high (HH) pass filters.

3.2.2 2-D Orthogonal Wavelet Transform

In the two-dimensional case, a multiresolution approximation of LZ(RZ) 1S a sequernce
of subspaces of LZ(RZ) .Let (V 2,-)j ez be a multiresolution approximation of L2(R2) . One

can readily show that the scaling function ®(x,y) can be written as ®(x,y) = 6(x)d(y),
where ¢(x) is the one-dimensional scaling function of the multiresolution approximation

(v2),

JEZ.

The detail signal at resolution 2 s equal to the orthogonal projection of the signal on

the orthogonal complement of V 5 in Vz,»ﬂ where O 5 is the orthogonal complement. One

can build an orthogonal basis of 02,- by scaling and translating three wavelets function,

®'(x,y), °(x, y), and ®>(x, y), where ®'(x,y) = 6(x)w(y), DX(x, ¥) = w(x)b(y),

3
and ®°(x,y) = w(x)w(y).
Figure 3-2 shows a schematic of the two-dimensional wavelet decomposition. The 2-D

wavelet transform can be implemented as a sequence of 1-D filtering operation. The resulting
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decomposition includes the low-low (LL) band corresponding to Ag,-f , the low-high (LH)

2.

band D_;f, the high-low (HL) band D :

£, and the high-high (HH) band D;-f.

3.2.3 Haar Wavelet Transform

The Haar wavelet having been developed in 1910 by Haar [117,122]. The Haar function
is defined by

L,0<x<1/2
v(x) =4 -1, 1/2<x<1 (3.6)
0, otherwise
which is also called the mother wavelet. For computing a wavelet, we may define a function
H(w) from (3.4), and compute the corresponding scaling function ¢(x) from (3.5). The scal-
ing function ¢(x) is given by
0, otherwise

Let

8.0 = Po(@x - 1)

where k € Z in each vector space sz .

Note that ¢ € V, and ¢ € V. Since {¢; |, k € Z} is a basis for V,, we can write ¢

in terms of ¢ , which is defined as

o(x) = %m,o(xw—}im, (%), 3.8)

and the Haar wavelet is defined by
1

y(x) = 75

by, o(x) = -j—§¢l, [(X). (3.9)
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Host signal

F(x) : _l—> B | — @ : — @ z 1D- IDWT
I |
” A, ! [

G | — @ Z 2
L e - e e - e e e 4
F——mm——————  AYS
- § =
S(x) L' rela | — @ —+— @ ALF
S I Scale factor berded
Signature | —|_> | D_S En;Lgenale
signal = 2 -
G | —@ O] F(x)
b e e e e e — 4 Scale factor
1D- DWT

FIGURE 3-3. A schematic of embedding in the DWT domain.

3.3 A Scheme for Merging Wavelet Coefficients

Consider now a host signal F(x) and a signature signal S(x), each of dimension N. If F
and S are two-dimensional signals, such as images, one could construct one-dimensional sig-
nals by row scanning the images. A simple scheme for merging the two images is illustrated

in Figure 3-3. In this scheme, both the host and signature signals are first wavelet decom-

posed by one level. The host wavelet coefficients (the approximation A;,-F and detail D;,-F

signals) are then added to the corresponding scaled signature coefficients (the approximation

A;S and detail D;,-S signals), to obtain the combined signal coefficients. They are repre-
sented by

dz _ .d F d

AZjF(x) = Az,- x)+a- Asz(x) (3.10)

DZjF(x) = DZJ-F(x) +a- Dz,-S(x) ; 3.11)

The combined coefficients are then inverse transformed to obtain the embedded signal

F (x) . From (3.10) and (3.11) the approximation signals of the host and signature data, when
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they are merged, are in the same vector space V. 5 at the resolution 2. Similarly, the detail

signals of the host and signature data are also located in the same vector spaces. Since the
coefficients are added in their respective sub-bands, we refer to this embedding method as the
scalar embedding in the DWT domain. This method is distinguished from the vector embed-
ding method, which will be described later in Chapter 6.

This scheme, while conceptually simple to understand, is not practical. In order to obtain
significant robustness to lossy compression while maintaining little perceptual distortion in
the embedded host, we need to consider signature data that is only a small fraction of the host
data.

3.4 Embedding using DWT

3.4.1 Embedding Procedure: MDWT

An extended spread-spectrum scheme for data embedding in the wavelet transform
domain is now presented. The basic idea is to spread the signature data in the host wavelet
coefficients. The dominant signature image coefficients are spread over multiple host signal

coefficients to ensure robustness to degradation.

3.4.1.1 Merging the coefficients

In the following discussion, it is assumed that the signature image is one quarter the size
of the host image, and both images are gray scale with one byte per pixel. A two-dimensional
Discrete Haar Wavelet transform is used ((3.8),(3.9)). This results in four sub-bands as shown
in Figure 3-2. An example of host and signature images is shown in Figure 3-4. The sche-
matic of the proposed approach is shown in Figure 3-5. It is assumed that the host image is
available for signature image recovery. The basic steps in embedding the signature coeffi-
cients into the host image coefficients are as follows:

1. Decompose by one level the host and signature images using the DHWT. This results

in four bands, LL, LH, HL, and the HH bands (Figure 3-5 (a)).
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(b) Signature images (128x128)

(a) Host (256x256)

FIGURE 3-4. (a) A host image and (b) two signature images.

2. Each signature image coefficient is expanded into a 2x2 block as follows.

a. Each coefficient value is linearly scaled to a 24 bit representation (Figure 3-5 (b)).

b. Let 4, B, C represent, respectively, the most significant byte, the middle byte, and the
least significant byte in a 24 bit representation (Figure 3-5 (b)).

¢. Three new 24-bit numbers, A', B', C', are generated with their most significant bytes
set to 4, B, and C, respectively, and with their two least significant bytes set to zero
(Figure 3-5 (c)).

d. Then, a 2x2 expanded block is formed as shown in Figure 3-5(d).

3. The host image coefficients are also linearly scaled within each band to a 24 bit repre-
sentation. The minimum and maximum values in each band will be used in the inverse

transformation below.

4. The scaled host image coefficients are now added to the expanded signature transfor-
mation to form a new fused transform coefficients. Let f(m, n) be the (m, n)t" wave-

iet coefficient of the host image, and let s(m, n) be the (m, n)t" signature coefficient
after forming the expanded blocks as described in Step 2. Note that after expansion

each of the bands in the signature wavelet transformation is of the same dimension as
the host image bands. The fused (m, n)% coefficient is then computed as:

w(m,n) = a - h(m, n) +s(m, n) (3.12)
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FIGURE 3-5. (a) A schematic of the data embedding approach. (b)-(d) Expanding a single
signature coefficient to a 2x2 block of coefficients for embedding in the host image.

where the scale factor a determines the relative percentage of the host and signature

image components in the new image. The scale factor o may vary between different

subbands. In our implementation, the scale factor for the LH and HL subbands are one-

half of the scale factor of LL subband embedding, and that of the HH subband embed-

ding is one-quarter that of the LL subband.

5. The fused transform coefficients in each band are scaled back to the levels of the host
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FIGURE 3-6. Embedded Lena image at two different scale factors, using the tiger image
(see Figure 3-4(b)) as the signature.

image transform coefficients using the minimum and maximum coefficient values in
Step 3.
6. An inverse transformation is now computed to give the watermarked image.
Examples of watermarked images for two different values of o alpha are shown in
Figure 3-6. Note that smaller values of o result in more perceivable distortions in the embed-

ded image.
3.4.2 Signature Recovery

3.4.2.1 Extracting Procedure

Figure 3-7 shows a schematic of the extraction procedure, which is essentially an
inverse sequence of operations in the embedding method. The signature coefficients are sepa-
rated from the watermarked DWT values by subtracting out the original host coefficients. It

is assumed that the original host image data is available.

3.4.2.2 Normalized Similarity Measure
The embedded signature data can be used for authentication. In this case the perceptual
quality of the reconstructed image is not the main issue. The similarity measure defined in

(3-2) for binary data can be extended to include gray scale images as well. Since the signature
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FIGURE 3-7. A schematic of the extracting procedure

image is assumed to be known in checking for authenticity, we consider cross-correlation

between the original signature s(m, n) and the received signature s*(m, n) from (3.12). The

normalized similarity is defined as follows

> s*(m, n)s(m, n)
S = m, n (3.13)
3 (s*(m,m))? 3 (s(m,n))?

m, n m, n

3.5 Experimental Results

We present here results of embedding 128x128 gray-scale (one byte per pixel) signature
images (tiger and hat-girl) in a 256x256 Lena image. Figure 3-4 shows the host and signature
images. Figure 3-6 shows the embedded Lena images using different scale factors. Note that
the higher the scale factor, the better the quality of the embedded image (i.e., less distortion
due to embedding). Even if the signature image has much texture information like the tiger
picture, the embedded image cannot be visually distinguished from the original host image.
Figure 3-8 shows the embedded Lena image at various levels of JPEG compression for a
scale factorof a = 7.

For data hiding purposes it is reasonable to choose a larger scale factor in (3.12) as we
are not too concerned with degradation due to image processing operations. In this case, it is
more important to ensure that the quality of the watermarked image is as close to the original

as possible, with very little visual distortion. Almost perfect reconstruction is possible when
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(2) 89%

FIGURE 3-8. JPEG compressed embedded Lena image. The tiger signature image is used
in this experiment with scale factor of o = 7.

(@) 49% ®) 79% (c) 89% d) 92%

FIGURE 3-9. Recovered signature images at different compression rates for scale factor a
= 5. The JPEG compression factors used for the embedded image are indicated below each
image.

(@ya=3 (b)a=5 (c)a=9 (d)a=11

FIGURE 3-10. Recovered tiger signature images from 92% JPEG (lossy) compressed
embedded images for different scale factors.
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there is no further image processing of the watermarked images. This can be seen from the
reconstructed tiger images (at low JPEG compression levels) in Figure 3-9.

For copyright authentication purposes it is important that the watermarked images are
robust to typical image processing operations. In such cases it is reasonable to assume that the
signatures require significantly fewer bytes than the host image and as such can be spatially
distributed. The results we show here are for lossy JPEG compression where the signatures
are gray scale images. It is reasonable to expect that one can obtain much better results if the
signatures are binary images or pseudo-random numbers, as is typically done in digital water-
marking. Lower values for the scale factor in (3.12) should be used when it is likely that the
image will undergo significant distortion. Figure 3-10 shows recovered signatures for JPEG
compression of 92% for varying scale factors. As expected, images embedded with a larger
scale factor result in poor reconstruction for the same compression factor. Figure 3-11 shows
another example wherein a different host image is used to embed the signatures.

Figure 3-12 shows the similarity measures computed with variable JPEG compression.
One can set a fairly high threshold value, of about 0.85, to detect the presence or absence of
an embedded watermark. Figure 3-13 shows the PSNRs of recovered signature images under
JPEG compression. Almost perfect reconstruction is possible when there is no further image

processing of the watermarked images.

3.6 Discussions and Summary

A robust scheme for image hiding using an extended spread spectrum technique in the
wavelet transform domain is presented. This approach could be used for both digital water-
marking related applications as well as for data hiding purposes. The scale factor controls the
relative amount of host and signature image data in the embedded image. A larger scale factor
can be used for data hiding in situations when it is desirable to maintain a high perceptual
quality of the embedded image. A lower scale factor is better suited for watermarking where
robustness under typical image processing operations is needed. Experithental results demon-

strate that good quality signature recovery and authentication is possible when the images are
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(a) Host (256x256)

(b) Embedded
(airplane, a = 5, 49%)

(c) Embedded 3
(baboon, e = 5, 49% )

(f) Signature {g) recovered

FIGURE 3-11. Another example of data embedding.

quantized and JPEG compressed by as much as 90%. Even if the PSNR quality of the recov-

ered signature image is of a low value, the recovered signature image is still perceivable.
Even though the Haar wavelet basis is used in these experiments, this method can be

easily adopted to other orthogonal wavelet transformations and for more than one level of

decomposition. Other basis functions may be worth exploring depending on the characteris-
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FIGURE 3-13. The PSNRs of the extracted signature image

tics of the host and signature images. In some cases, particularly when the host image back-

ground lacks texture and the signature image has considerable amount of texture, one can see

a noisy background in the embedded image.

In digital watermarking, the signatures are usually of a much smaller dimension com-

pared to the host image. Since the proposed method can manage a significantly larger amount

of signature data, it is possible to distribute the signature spatially as well, thus making water-

marking robust for operations such as image cropping.
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Chapter 4
Data Hiding using Lattice Codes

This work generalizes the MDWT method for data hiding presented in the previous
chapter by introducing channel coding techniques into the embedding procedure. The new
method, referred to as the MLDWT method, uses noise resilient channel codes derived from
lattice structures. Similar to communication channel noise, the watermarked image might
undergo undesirable transformations, such as intentional manipulations to remove or degrade
the quality of the watermarking, or signal compression that may affect the watermark. The
lattice coding of the signature data helps in further improving the robustness of the water-
marked image to lossy compression [28,29,30,48].

If the original host image is available, the operations of data injection and retrieval are,
in fact, very similar to the channel coding and decoding operations in a typical digital com-
munication system [93]. Channel coding refers to the gamut of signal processing operations
performed before the transmission of data over a noisy channel. For watermarking in the
transform domain, the original host data is transformed, and the transformed coefficients are
perturbed by a small amount in one of several possible ways in order to represent the signa-
ture data. When the watermarked image is compressed or modified by image processing
operations, it is equivalent to adding noise to the already perturbed coefficients. The retrieval
operation subtracts the received coefficients from the original ones to obtain the noisy pertur-
bations. The true perturbations that represent the injected data are then estimated from this
data as best as possible.

The proposed method, MLDWT, adopts a vector-based approach to hidden data injec-
tion [28, 29,30,48]. We group N transformation coefficients to form an N-dimensional vector,
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and modify it by codes that represent the data to be embedded. The motivation for using vec-
tor perturbations as opposed to scalar perturbations follows from the realization that higher
dimensional constellations usually result in a lower probability of error for the same rate of
data injection and the same noise statistics. ‘

It is well known that embedding in the low-frequency bands is more robust to manipula-
tions such as enhancement and image compression. However, changes made to the low fre-
quency components may result in visible artifacts. Embedding in the N-dimensional space
allows a low level of signal data injection while maintaining robustness to compression.

The methodology using lattice codes is described in the next section. Embedding using
lattice codes is presented in Section 4.2, and signature extraction is described in Section 4.3.
Section 4.4 shows experimental results using gray scale and color images. We conclude with

discussions and summary in Section 4.5.

4.1 Multidimensional Lattice Codes

Multidimensional lattices are frequently used in vector quantization [28,29,30,48]. The
Voronoi regions of various n-dimensional lattices can be used to construct n-dimensional
quantizer cells for uniformly distributed inputs [93]. The Voronoi region around any lattice
point is the set of points in R closest to the lattice point. Therefore, the Voronoi region V(0)

around the origin is given as:

V() = {xe ‘.Rnlllxll <|x—ull (forall nonzero ue A)} (4.1)

It has been shown by Conway and Sloane [28,30] that some of these lattices produce
very good channel codes, and yield high values of nominal coding gain. That is, for the same
power constraint on the channel, the channel codes are maximally separated from each other

so that they are most robust to noise.

4.1.1 Description of Lattices

If a),...,a, are n linearly independent integer vectors in an m-dimensional Euclidean

space with m = n, then the set of all vectors
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X =ua; +..+tua 4.2)

where u,,...,u, are arbitrary integers, constitute an n-dimensional root lattice A, [28,29,30]. A
lattice coset of A, is obtained from a lattice A, by adding a fixed translation vector ¢ to the
points of the lattice,
X* = ua; +..+tua +t. 4.3)
The norm of a vector x is defined as
N(x) =x-x = (x,x) = fo’ . 44
The minimal norm of A is simply the minimal squared distance between distinct lattice vec-
tors,
min{N(x-y):x,y e A,x#y'} = min{N(x): x € A, x#0} “4.5)
For any lattice A, let N, be the number of vectors x € A of norm m, i.e. with x-x = m.
So the number of ways of writing m as a sum of lattices squares is equal to the number of vec-
tors of norm m in the lattice. Further, if A is a lattice in ®" , the dual lattice A* consists of all
points x in the span of A such that x -y € Z forall y € A. Some common lattices and defini-
tions are given below.

+ The n-dimensional lattice Z" is the set of integers z" = {(Xps .- Xp): x;€Z}. For
example, Z? is a square lattice.

e Forn>1, A is the n-dimensional lattice consisting of the points (xg, x|, ..., X)) in
zm ! with >'x; = 0 in R"" t , which uses n + 1 coordinates to define an n-dimen-
sional lattice.

* Forn23, D consists of the points (X, X5, ..., X)) In Z" with > x; even. In other
words, if we color the integer lattice points alternately red and blue in a checkerboard
coloring, D, consists of the red points. In 4 dimensions the D, lattice is known to yield
the best coding gain.

The even coordinate system of Eg consists of the points {(xy, X5, ..., X):all x; € Z or
all x; e Z+172, 3 x;=0 (modulo 2)}. The odd coordinate system is obtained by changing
the sign of any coordinate with Y x; =2xg (modulo 2).
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E¢ is a subspace of dimension 6 in Eg, consisting of the points (ug, u;, ..., u;) € Eg
with E¢ = {x € Eg : x;+xg =X+ ... +X,=0} inan even coordinate system.

The lattice codes of D, E¢ and Eg have certain desirable properties, such as giving the
minimum mean squared quantization error, making their choice attractive for coding applica-

tions.

4.1.2 Lattice Code Assignments

The squared norm is the distance of a lattice point to the all-zero origin vector. One can
organize the lattice points in shells such that points on a given shell are all equidistant from
the origin. Shell 1, for example, refers to those points that are closest to the origin. In Shell 2,
the squared norm is 4 and consist of points that are at a distance of 2 units from the origin.
Table 4-1 lists the shell numbers and the corresponding distances for some of the commonly
used lattices.

Consider, for example, the D, lattice. It consists of the lattice points (x;,..., x4) having
integer coordinates with an even sum. As in all lattices, the lattice points of the D, lattice fall
on concentric shells of increasing distance from the all zero vector. For example, the 24 lat-
tice points given by all permutations of (1, +1, 0, 0) lie on the first shell of the lattice at a
distance /2 from the center. The second shell at distance 2 from the center contains 24 lattice
points again, 8 of which are of type (+2, 0, 0, 0), and 16 are of type (£1, £1, 1, £1). Table
4-1 shows the shell number, the squared norm, the number of lattice points, and the lattice
point types for the first few shells of the D, lattice. The superscript ‘p’ in the last column of

the table denotes all permutations of the elements in the parenthesis.

4.2 Embedding Using Lattice Codes

The basic steps in embedding using lattice codes are quite simple. The host and signal
data are first transformed using DCT or DWT. The transformed host coefficients are grouped
to form N-dimensional vectors, where N depends on the type of lattice quantizer used. Let ‘x’
represent a host vector in an N-dimensional space, as shown in Figure 4-1(a). The signal

coefficients are quantized and encoded into one of B—symbols, {s;, S2,.--, SB}' To embed data
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TABLE 4-1. Code types and structure of the multi-dimensional lattices.

Shell Squared Number of codes Examples of source
No. Norm D, E; Eg Ass codes in D,
I 2 24 72 240 0 (£1,%1,0,0)°
2 4 24 270 2160 4320 (£2,0,0,0)P,
(£1,%1,£1,£1)P
3 6 96 720 6720 61440 (£2,+1,%+1,0)°
4 8 24 936 17520 522720 (£2,+2,0,0°
5 10 144 2160 30240 2211840 | (£2,%2,%+1,£1)P,
(£3,%1,0,0)°
. i inside of
A possible pejtur{d vector A I:g;sgeg:i?; bui)s:m‘c:l:ry
(R
X \‘. ’
55 ° <.\i 530 *e Sivr
o > Basis Host Vector ~ | K
S Sp
" -
(a) Possible perturbations (b) Estimation from received noisy vector

FIGURE 4-1. Basic embedding methodology. (a) Possible p-ary perturbations of the host
vector. (b) Possible noisy vector positions of original perturbed vector s; after transformation.
(all points shown above are in an n-dimensional space)

from an B-ary source, we perturb the original vector so that the perturbation coincides with
one of B corresponding channel codes. The perturbed vector is denoted by one of the lattice
point ‘o’s in the Figure 4-1(a), depending on the particular source symbol it represents.

At the receiver, let us assume that a perturbed vector ‘*’ is received (see Figure 4-1(b)).

The received ‘*’ may not coincide with one of the f—symbols due to changes in the embed-
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D - 3
Signature image . private key
v watermarked

—_— |[DWT | —> Encoder |—> [IDWT| — | DWT| —— | DWT

Recovered <— |ipwr| <— [BXtracting| <
signature image A

* private key
FIGURE 4-2. A schematic of the MLDWT.

ded data. It is then a simple estimation problem to compute the transmitted symbol given the
noisy observation ‘*’. Assuming an additive Gaussian noise model, the received vector is
decoded as representing the symbol whose channel code it is closest to in the Euclidean
space.

The coefficient vectors perturbed in our implementations are typically multidimensional
(4-D, 6-D, and 8-D), and the channel code used to embed the data is a subset of one of the Dy,
Eg, or Eg lattices. As the quantity of embedded data increases, higher order shells of the
embedding lattice are included in the channel code to accommodate them. Figure 4-2 shows a
schematic of our watermarking procedure.

The number of quantization levels for the signature image data and a scale factor o con-
trol the quality and the quantity of the embedded data. A larger scale factor & means better
signature reconstruction at the expense of the quality of the embedded data. The number of
quantized levels B, on the other hand, determines the coarseness of quantization and there-

fore the quality of the signature image hidden in the host.
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A
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FIGURE 4-3. Embedding procedure

4.2.1 Embedding Procedure: MLDWT

A single level of the discrete wavelet transform decomposition of both the host and the
signature image is made before data embedding. The encoder block of Figure 4-2 is further
expanded in Figure 4-3. The signature DWT coefficients are quantized using a lattice source
codebook and the quantized index is then encoded by the lattice channel codebook. The
embedded DWT coefficients merge the basis host vector and the scaled channel coder.

Each coefficient of the signature image is quantized into 3 levels. In order to embed the
quantized coefficient information, a set of n coefficients in the host image is grouped to form
an n-dimensional vector. For example, n = 4 for the D, lattice coding. This n-dimensional
vector then perturbed according to a B-ary channel code consisting of a subset of an n-dimen-
sional lattice scaled by a factor o. If v represents a vector of host DWT coefficients after
grouping, and the index of the quantized signature coefficient is i, then the perturbed vector

W is given by:
¥ =V+a-C(sy) (4.6)

_)
where C(s;) represents the channel code (subset of the n-dimensional lattice) corresponding

to the symbol s; where i = /,..., B.
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TABLE 4-2. Example of code assignments for the D lattice.

Quantizer Levels b Lattice points in channel code
2 (0,0,1,1),(0,0,-1,-1)
24 Shelly
32 Shelly, (+2,0,0,0)°
48 Shelly, Shell,
144 Shelly, Shelly, Shells
168 Shelly, Shell,, Shells, Shelly

Each subband of the signature image is embedded into the corresponding subband of the
host. As in Chapter 3, we consider a data hiding rate of 25%. Thus, each coefficient in the LL
band of the signature image is hidden in four coefficients in the LL band of the host, and so
on. The scale factor chosen for embedding in the higher bands is usually less than the scale

factor chosen for the LL band.

4.2.2 Signature Quantization

The choice of channel codes used depends on the signature quantization. Recall that the
D lattice consists of all integer n-tuples with an even sum. As the quantity of embedded data
increases, higher order shells of the lattice are included in the channel code to accommodate
them. Table 4-2 lists subsets of the 4-dimensional D, lattice chosen for various values of
source quantization levels B. A larger value of B quantizes the signature finely, but this
requires a larger scale factor a to keep the probability of error sufficiently low. This in turn
degrades the transparency of the watermarked image. The choice of the parameters o and 3
determines the trade-off between the transparency and the quality of the hidden data.

For security, we can select special regions in the transformation domain to embed data,
or randomly group the coefficients to form a vector using a private key. Pseudo-random

sequences can be used for random grouping.
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FIGURE 4-4. Signature extraction.

4.3 Signature Extraction

A watermarked image may be subject to lossy compression or image processing opera-
tions such as enhancement. Under the assumption that the resulting perturbations in the wave-
let transform domain can be modeled by additive Gaussian noise, a nearest-neighbor search
with the Euclidean distance measure can be used to recover the embedded symbols. The
decoder block in Figure 4-2(b) is expanded in Figure 4-4 to show the details of symbol recov-
ery and signature extraction.

Recovering the hidden data starts with computing the DWT of the embedded image. As
before, we assume that the true host image coefficients are available at the decoder. These
original host image coefficients are then subtracted from the coefficients of the received
image to obtain the noisy perturbations. Note that the perturbations recovered can be “noisy”,

because of various possible transformations of the watermarked data.

4.3.1 Determining the Closest Point

These coefficients are now grouped into sets of # in the same manner as they were
grouped during encoding (possibly using a private key) to obtain a vector & (F igure 4-4).
This is then scaled by the factor 1 /a . The resulting vector 1/a - & is then the nearest-neigh-
bor encoded to find the index i of the channel code nearest to it in Euclidean distance. In par-

ticular, we find an index 7 such that:
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FIGURE 4-5. Decision boundary for a perturbed lattice point.
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where E)I(si) refer to the B code vectors in the channel codebook. For lattice-based channel
codes, this is equivalent to finding the lattice point in whose Voronoi region (see (4.1)) the
vector 1/ - & lies. From the index i, the quantized DWT coefficients can be obtained.
Consider Figure 4-5. Let a perturbed vector corresponding to a channel code s; be
received as a noisy vector r;. As long as it is inside the decision boundary of the original per-
turbed vector s;, we can receive the data perfectly. However, if the embedded vector is recov-
ered as r';, located outside of the decision boundary, the symbol detected will not be the
original perturbed value s;. To reduce the incidence of erroneous detection, one can expand
the decision boundary by using a larger scale factor, at the expense of quality of the embed-

ded data.

4.3.2 A Fast Algorithm [28,30]

One of the motivations for using lattice-based channel codes in our implementation is
the existence of fast encoding and decoding algorithms. We present a fast encoding algorithm
for the D, lattice that is used to extract the hidden symbols from the noisy vectors received, if

the number of channel symbols B is sufficiently large.
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The algorithm for finding the closest point on the lattice to an arbitrarily scaled noisy
perturbation r; = (1/ a)é e R", is particularly simple. Let r; =[x, X5, ---, X,] . Note that
all points of D, are included in the n-dimensional cubic integer lattice I”. For any x eR, let
f(x) = closest integer to x. We define f(x) and w(x) as follows: o

Ifx—|x]<0.5,then f(x) = [ x], w(x) = [x]

else f(x) = [x7], w(x) = |x]
We can write x = f(x) + 8(x), so that [3(x)| <12 is the distance from x to the nearest
integer. The vectors f(x) and g(x) are defined by
f(x) = [f(x)), f(x3), ..., f(xy), ..., f(%p)] (4.8)
and
g(x) = [f(x}), f(x3), ... W(Xy), --on f(xp)], 4.9)
where k = arg(max;5(x;)) and 8(x;) = |xi - f(xi)l . The nearest point to x in the D, lattice
structure is chosen as whichever of f(x) and g(x) that has an even sum of components. The
fast algorithm works quite well for lossy JPEG compressions of up to 70%. However, if x
computed using (4.8) and (4.9) is equidistant from two or more points of the lattice, we must

calculate the nearest point from the relation (4.7) in the previous section.

4.4 Experimental Results

We present results on three different types of embedding: gray image-in-gray image;
gray image-in-color image; color image-in-color image; We assume that the original host

image is available at the decoder.

4.4.1 Gray Scale Images

Figure 3-4 shows the host and signature images used. A one-stage discrete Haar wavelet
transform is used in the following experiments. The Dy lattice is used for encoding. Figure 4-
6 shows the Lena image watermarked with the hat-girl image, at different scale factors o, and
various quantization levels 8, without any compression. Note that the scale factor a controls

the relative weight of host and signature image contributions to the fused image. As a
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} @ =10, B=2

() 0=10, B=144 [

} (c) a=10, B=32

(d) a=20, p=32

FIGURE 4-6. Host image “lena” with embedded “hat-girl” image for different scale factors
and quantization levels. )

increases, the quality of the watermarked image degrades. For example, in Figure 4-6(d), one
can see artifacts in the background for a=20. a=10 appears to be a reasonable choice in terms
of the trade-off between quality of the watermarked image and robustness to signature recov-
ery under image compression.

Figure 4-7 shows the recovered signature images from the watermarked image after 0%,
65%, 75% and 85% JPEG compression. In general, most of the recovered signature images
are of very high quality for 85% JPEG compression, when the scale factor ¢ is in the range
10-15. The quality of the recovered signature with a large scale factor o is obviously much
better than those with a smaller a. The number of quantizer levels B, on the other hand,
determines the coarseness of quantization and therefore the quality of the signature image

hidden in the host. Figure 4-8(a) shows the similarity (computed as described in the previous
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(a) =10, 0%, B=32

(c) a=10, 75%, B=32 (O a=15, 85%, B=32 (i) a=15, 85%, =144

FIGURE 4-7. Extracted “hat-girl” signature images for different scale factors, JPEG ratios,
and quantizer factors.
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FIGURE 4-8. Similarity and PSNR results for the multidimensional lattice based embedding
algorithm. [n this experiment, signature quantization level g = 32.
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B (a) a=10, 75%, B=32

() a=15, 85%, p=32

(d) a=15, 75%, B=32

(e) a=15, 85%,3=32

FIGURE 4-9. Another example: (a),(b) Watermarked images using “tiger” signature with
JPEG compression, (c)-(¢) The recovered signature images following JPEG lossy
compression, at various scale factors.

chapter) as a function of the JPEG compression factor, for authentication applications. It is
observed that good authentication is possible even at 90% JPEG compression. Here the num-
ber of quantization levels used is B=32. Figure 4-8(b) shows the PSNR of the recovered sig-
nature, also as a function of the JPEG compression factor. The recovered signature images
are of acceptable quality for up to 85% compression.

Figure 4-9 shows few more examples. Figure 4-9 (a),(b) are the watermarked images
with =32, with 75% and 85% JPEG compression, respectively. Figure 4-9 (c-e) shows the
recovered image from 65%, 75% and 85% JPEG-compressed watermarked images.

Figure 4-10 shows some results for the case using a lossy wavelet transform-based com-
pression method [39]. In this case the recovered signature images are of high quality for up to

75% compression.
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(@) a=10, 75%, =32

(d) a=10, 72%, B=32

(€) a=15, 75%, B=32

FIGURE 4-10. The results from the lossy wavelet transform based compression: (a), (b), the
compressed watermarked images, (c)-(e), the recovered signatures.

4.4.2 Embedding Color Images
The MLDWT method can be extended to embed data in color images. The color images

are represented in the YUV color space where the Y component is the luminance part of the
signal, and U and V represent the chrominance components. The U and V components are
down-sampled by a factor of two. Adopting the YUV color space facilitates a simple exten-
sion from images to digital video such as those in the MPEG format. Signature data is embed-
ded only in the luminance component Y so as not to distort the color information.

Figure 4-11 shows an example. Figure 4-11(a) shows a 256x256 color image and
Figure 4-11(b) shows a 128x128 gray scale signature. The signature is injected only into the
Y component of the transform coefficients of the host image. Figure 4-11(c) shows an 81%
JPEG compressed watermarked image using 32 channel codes and Figure 4-11(d) shows the

same compressed image using 144 channel codes. Note that there are no visible distortions in
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(e) a=15, 81%, B=3 (f) a=15, 81%, B=144

FIGURE 4-11. (a) A color host image, (b) a gray-scale signature image, (c),(d) Watermarked
and JPEG lossy compressed images at two different quantization levels, and (e),(f)
recovered signature images from (c) and (d), respectively.

the watermarked and JPEG compressed images. Figure 4-11(e) and Figure 4-11(f) show the
recovered signatures for the two quantization levels. The reconstructed images are of very

good quality for authentication purposes.:
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(a) a=15,81%, =32

FIGURE 4-12. (a) Watermarked image, (b) JPEG lossy compressed image of (a), (c)
signature image used in (a) and (b), and (d).(e) recovered images.

Figure 4-12 shows another example of a color signature embedding. The entire signature
data is embedded in the Y component of the host data in order not to distort the color in the
watermarked image. For this reason, the size of the signature image is less than that for a
gray-scale embedding. Another example of color image embedding is shown in Figure 4-13.

Figure 4-14(a) shows the similarity of the reconstructed image to the original signature
image for various levels of JPEG compression. As can be seen from the graph, the water-
marked image can be easily authenticated even at 85% lossy JPEG compression. Figure 4-
14(b) shows the Peak Signal to Noise Ratio (PSNR) of the reconstructed signature image as a
function of the JPEG compression factor. The PSNR is computed with respect to the original
signature before quantization. Note that good quality reconstruction is possible for up to 75%

JPEG compression at a=15.
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¢ Y (a) Host (512x512)

(b) Signature (d) recovered
(204x204). from (c).

(c) Watermarked a=15, 81%, f=32.

(f) Signature (g) recovered from (e).
(204x204).

(e) Watermarked =15, 81%, B=32.

FIGURE 4-13. Another example of colorimage embedding
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FIGURE 4-14. Similarity and PSNR results for the host and signature images shown in
Figure 4-11.

4.5 Discussion and Summary

We have presented a scheme for data embedding using the multidimensional lattice in
the DWT domain. The scheme presents a framework for a more structured digital watermark-
ing scheme, aimed at embedding large amounts of data into a host. As the results demon-
strate, there are no visible distortions in the watermarked images and signature recovery is
possible even at 85% lossy JPEG compression.

One can further improve the quality of the recovered signature by using higher dimen-
sional lattice structures. However, the high dimensional lattice can not support large amounts
of data hiding.

By properly indexing the scalar codebook used for the wavelet coefficients of the signa-
ture image, the recovered signature quality can be substantially improved for the same scale
factor of embedding and for the same number of levels for quantization. More sophisticated
schemes for error resilience, such as trellis-coded modulation, could also be used.

In the next chapter, we will present an adaptive data hiding method and propose a new

technique that can recover the hidden signature data without host information.
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Chapter 5
Reconstruction without the Original

Host Image

Much of the prior work in signature authentication and in data hiding assumes that the
host source is available. Examples of methods that do not require the original host data for
signature recovery include [34,31,40,90]. In this chapter we propose an approach to signature
recovery that does not require knowledge of the original host by using adaptive hiding tech-
niques. The main contribution here is a technique that has the potential for embedding a sig-
nificant amount of data which can then be recovered without any additional knowledge of the
host.

The proposed embedding and extracting methods utilize the DCT domain. The DCT
transform has good energy compaction properties and is used in the current image/video com-
pression standards such as JPEG and MPEG. For this reason it has been frequently used in
digital watermarking research [17,60,61,90,91,118,123,129]. By taking into account the spe-
cific details of JPEG/MPEG compression methods, one can also make the DCT based embed-
ding more robust to such compression. In this context, we will explore block masking and
signature image quantization for adaptively embedding the data into a host image.

We present an adaptive data hiding method with texture masking in the next section, and
discuss the signature quantization matrix in Section 5.2. Section 5.3 presents the no-host
recovery scheme using host block partitioning that is based on the lattice embedding scheme.
The experimental results are given in Section 5.4 and we conclude with discussions in

Section 5.5.
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5.1 Texture Masking

The human visual system is more sensitive to changes in low frequency regions than to
changes in highly textured regions. Thus highly textured regions can be subject to more dis-
tortions before such changes are perceivable. This is the basic idea behind texture masking
wherein the perturbations to the host data are adaptive to the local texture content.

Many of the recent work on watermarking have used adaptive embedding to improve the
quality of the embedded image. These include visual masking [25,70,90,110,118] and water-
mark generation using a visual model [15,92]. The main objective of these adaptive methods
is to improve the quality of the embedded image.

Selective visual masking can be used to make the embedding locally adaptive. For
example, Tewfik’s group [109-114,132] has used a model for visual masking. One form of
visual masking is frequency masking, which refers to a situation wherein a signal raises the
visual threshold for other signals around it. A spatial, sinusoidal pattern will lower the detect-
ability of other sinusoidal patterns whose frequencies are close to that of the sinusoidal pat-
tern. This model [73] predicts the detection threshold at a frequency f given the masking
frequency f,, and local contrast c,,. In particular, they use a model based on the DCT domain

[132]. Similarly, spatial patterns can affect the visibility of other features that are spatially
close to them. For example, luminance edges and fine details reduce the visibility of other
signals around them.

Huang et al. [61] define three different block type categories under the DCT coeffi-
cients. They estimate the average brightness and texture complexity from each block and
classify into the following the dark and weak texture class, bright and strong texture class,
and normal class.

Tao et al. [118] propose an adaptive watermarking technique using a noise-sensitivity
index from regional classification in the DCT domain. They proposed classifying each block
into different noise sensitivity classes and inserting the signals of different energies accord-
ingly. Such properties as luminance masking, edge masking and texture masking effects are
exploited according to the human visual system. They divide the data into 6 classes and

embed the data adaptively.



5.1 Texture Masking 69

In the visual model approach, one can adapt each watermark sequence to the local prop-
erties of the image thus providing a watermark that is transparent and robust. Podilchuk ez al.
[91,92] propose an image-adaptive watermarking scheme based on utilizing visual models
which have been developed in the context of image compression. Perceptual coders based on
the just noticeable distortion (JND) thresholds determine optimum quantization step sizes or
bit allocations for different parts of the image as determined by a model of the human visual
system and local image characteristics. The JND profile estimator can be very useful in deter-

mining the maximum amount of energy that can be inserted without causing visual artifacts.

5.1.1 Texture Block Classification

Since the human visual system is more sensitive to the changes in low frequency regions
than highly textured regions, data insertion in the textured regions is less likely to result in
visible distortions compared to flat regions. In the following, we suggest an alternative tex-
ture masking scheme that determines the amount of signature data to embed for each 8x8 host
block. A scale factor ¥ controls the amount of inserted signature data. For flar regions this
scale factor is kept low, whereas for textured regions this is set to a higher value. Since the
decisions are made in an 8x8 window, estimation of v is quite robust and resistant to JPEG
compression. Further, at the decoding end the scale parameter can be directly computed from
the received (embedded) signal. This is particularly important since we assume that the origi-
nal host data is not available for reconstruction.

Consider a host 8x8 DWT block using a one-level wavelet decomposition. Let B={LH,
HL, HH} be the set of subbands (Figure 3-2). A Haar wavelet decomposition is used in our

experiments (see Chapter 3). For b € B, Let py,(b) be the average energy in band b of the

host image after a one level decomposition. Let piy(b) be the average energy in band b for

the block under consideration. Define the block texture energy to be

(5-1)

If pp(b) exceeds a given high threshold, say Ty (b), then the corresponding block is consid-
ered to have significant texture in band b. If the block texture energy exceeds the threshold
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for two out of three bands, then the block is considered to be highly textured. Similarly, if
two out of three band energies fall below the low threshold Ty (b), then the corresponding

block is considered to be low in texture.

5.1.2 Texture Scale Factor

Each host image DCT block is thus classified into one of highly textured, normal, or low

textured block. The texture block factor y is appropriately set for each of these three classes

as follows:
Ty(b) = ‘5‘, vb e B (5-2)
T, (b) = %, Vb e B (5-3)

y(high) = 2, y(normal) = 0, y(low) = -2.

These values are determined empirically using a set of host and signature images, and
subjectively evaluating the quality of the embedded data in different textured regions. Since
the inserted signal level varies according to the local texture content, this adaptive masking
results in good quality embedded images. Figure 5-9 shows an example of image embedding
with and without texture masking. Notice that the distortions in the sky region in the images

are less visible with texture masking.

5.2 Signature Quantization Matrix

Quality and quantity of the signature data of as much concern as the quality of the water-
marked image. The number of bits required to code and embed the signature depends on how
the signature image is quantized. We propose two signature quantization matrices and encod-
ing using lattice codes that can be used to embed signature images up to 25% of the host
image size.

The signature image quantization follows along similar lines as the JPEG compression
using block DCT. There is an obvious trade-off between the quantity of the signature data
and the quality of the reconstructed image. Due to the use of DCT, the proposed embedding
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FIGURE 5-1. Example of a signature quantization matrix for an 8 x 8 DCT coefficient block.
(a) This requires 112 host image coefficients to encode based on the lattice coder. (b) This
signature quantization matrix requires 192 host coefficients.

method is especially robust to JPEG compression, as we will demonstrate in Section 5.4.

The signature coefficients are quantized in two steps: first, by using the standard JPEG
quantization matrix [1,124], and then by a user-specified signature quantization matrix. The
signature quantization matrix determines the relative size of signature data compare to the
host data, thus controlling the quantity and quality of the embedded data. These quantized
signature coefficients are then encoded using the multidimensional lattices and inserted into
the host DCT coefficients.

Consider an 8 x 8 DCT coefficient matrix. From image compression and information
theory, it is well known that low frequency coefficients require more bits than the high fre-
quency ones. One such quantization matrix, indicating the number of quantization levels for
each of the 64 coefficients, is shown in Figure 5-1(a). These quantized coefficients are
embedded in a lattice structure. For simplicity, we will consider only those shells in the lattice
structure whose elements are {0, 1, +2} . One method for distributing these coefficients is
given below:

* Quantization Level=1232. Use Lattice type Eg: The first and second shells of Eg lat-

tice combined have 2400 code words. We use the 1232 code words from the combina-

tion of first shell and part of second shell in this lattice. Since an Eg code has eight



72 Chapter 5. Reconstruction without the Original Host Image

components, it requires 8 host coefficients to embed one Eg code. There are 3 coeffi-
cients with this quantization, requiring 24 host coefficients to embed.

* Quantization Level=342. Use Lattice type E;: The first and second shells of E lat-
tice contain 342 code words. Six host coefficients are needed to embed an E4 code.
The six coefficients in the DCT matrix thus need 36 host image coefficients to embed.

* Quantization Level =48. Use Lattice type D, : The first two shells of D4 are used to
encode 48 levels. Each D, code requires four host coefficients. There are thirteen
coefficients with this quantization, thus requiring 52 host coefficients.

The scheme outlined above thus needs a total of 112 host coefficients (3x8 + 6x6 + 13x4
= 112 coefficients) to embed one 8x8 DCT block of coefficients from the signature image.
The quantized coefficients are transformed to a lattice code, and the code is embedded into a
partitioning of the host DCT block (see Section 5.3.2)

Another example of signature image quantization and the corresponding host coefficient

allocation are shown in Figure 5-1(b). Notice that 192 host coefficients are needed for this
case (6x for Eg, 16x for E¢, and 12x for D, = 6x8 + 16x6 + 12x4 = 192 coefficients).

5.3 MLDCT: A Method for Image Embedding and No-Host
Recovery

We now outline the data embedding and reconstruction procedure. The main compo-
nents include host DCT block partitioning, signature image quantization, and texture mask-

ing. A schematic of this method is shown in Figure 5-2.

5.3.1 Host Image Block Partitioning

First step in the embedding procedure is to identify the host coefficients that are modi-
fied due to insertion. Consider a host 8x8 DCT block (Figure 5-3(a)). The DCT 8x8 block is
partitioned into three frequency parts - low, middle, and high - as shown in Figure 5-3(b).

The low frequency components contain most of the host signal energy but cannot be eas-

ily modified as such changes may become visible. The high frequency components, which
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FIGURE 5-2. A schematic of the MLDCT data embedding procedure.
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FIGURE 5-3. High and Low frequency masks.

usually pack the least amount of energy, could be easily removed because of signal process-
ing operations. This leaves us with the middle frequency components (shaded region in
Figure 5-3(b)). This mid frequency band in each host DCT 8x8 block is set to zero before
replacement by the signature information. The zero setting creates a zero host vector which is
needed for recovery when the original host signal is unknown. Private keys can be used to
appropriately select a subset of host coefficients for modification.

Figure 5-4(b) shows an example of selected 28 coefficients (shaded components) which
are available in each of the DCT blocks for embedding. One signature 8x8 DCT block, as
shown in Figure 5-4(a), is quantized for embedding, which will require 112 host coefficients.
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FIGURE 54. (a) Example of a signature quantization matrix for an 8 x 8 DCT block. This
requires 112 host image coefficients to encode (see text for details). (b) A partitioning of the
host DCT block for signal insertion (shaded regions). 28 coefficients are used in each block.
Thus, four host DCT blocks (4x28 =112) are needed to embed one 8x8 signature DCT
block.

Note that four host DCT blocks are needed to embed one 8x8 signature DCT block. Figure 5-
5 shows another example. In this case, the 12 host coefficients (shaded components) selected
from each host block. The quantization levels, as shown in Figure 5-5(a), require 192 host
coefficients for embedding. This requires sixteen host blocks for embedding one 8x8 signa-

ture block.

5.3.2 Embedding Procedure: MLDCT

Figure 5-6 shows the details of the encoding block from Figure 5-2. The host and signa-
ture images are transformed by the block-based DCT. Each 8x8 host image block is analyzed
for its texture content, as explained in Section 5.1.2, and the block factor y is computed. The
steps in embedding are:

1. The signature coefficients are quantized according to the method described in
Section 5.2. The quantized coefficients are encoded using a lattice coder (Chapter 3),
chosen such that the code vectors contain only £2, +1 or zeros.

2. The signature codes are then appropriately scaled using the total scale factor
8 = a+y and the JPEG quantization matrix [124]. The JPEG quantization matrix



5.3 MLDCT: A Method for Image Embedding and No-Host Recovery 75

1232{123211232| 342 | 342 342 48 | 48 --
1232(1232 342 | 342| 342| 48| 48 .

0

1232 3421342(342| 48 | 48| 0 | O ..
342| 342( 342/ 48|48 | O (| O .
342] 342/ 48 {48 | 010|010 -
342/ 48|48 | 0[(0J 0|00 -
342| O 00|00 .-
0|0 olojo]|o -I

(a) signature quantization (b) Selected positions for embedding

FIGURE 5-5. Another example of a signature quantization matrix and the corresponding host
coefficient allocation. This requires 192 host coefficients, which are distributed over 16
blocks, 12 coefficients per block, as shown by the shaded regions in (b).
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FIGURE 5-6. A schematic of the encoder
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helps in re-normalizing the code vectors so that they have a similar dynamic range as a
typical DCT block. Note that & 2 0, which in turn constrains the choice of o and y.
3. The selected host coefficients are then replaced by the scaled signature codes and

combined with the original (unaltered) DCT coefficients to form a fused block of DCT
coefficients. Note that more than one host coefficient is needed to encode a single sig-
nature code.
4. The embedded coefficients are combined with low and high components of the origi-
nal host DCT block.
5. The fused coefficients are then inverse transformed to give an embedded image.
The choice of signature quantization matrix affects the quantity and quality of the
embedded data. Choice of the scale parameter o depends on the application. A larger value

for a results in a more robust embedding at the cost of quality of the embedded image, i.e.,

there could be perceivable distortions in the embedded image. A smaller a may result in
poor quality recovered signature when there is a significant compression of the embedded

image.

5.3.3 Extracting Procedure

Figure 5-7 shows the schematic of the decoder without the host image. Signature recon-
struction essentially follows an inverse sequence of operations. Note that signature extraction
does not require the original host image. The degraded watermarked image is first trans-
formed by DCT. The coefficients corresponding to the signature and host data are identified.
The high frequency components are neglected during the reconstruction phase. The host
image is recovered by the inverse DCT of the low frequency coefficients.

By appropriately scaling the coefficients corresponding to the signature data, the lattice
codes representing the quantized signature coefficients are recovered. Assuming the zero-
host vector, computing the signature coefficient values is straightforward and very similar to
the method described in the previous chapter (Section 5.3.1). Finally, the signature image is
obtained by inverse transforming the block DCT coefficients.
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FIGURE 5-7. Signature and host image recovery.

5.4 Experimental Results

Figure 5-8 shows the host and signature gray images used in the experiments. We use
two different sizes for the host image: For embedding using the signature quantization matrix
of Figure 5-1(a), a 256x256 host image is used, resulting in 25% data embedding. A 512x512
host image is used with the quantization matrix of Figure 5-1(b), using only a one-sixteenth
size signature image.

Figure 5-9 shows the embedded images using the MLDCT with and without texture
masking. The signature quantization matrix shown in Figure 5-1(b) is used for this. From
Figure 5-9(b), it is clear that texture masking reduces visible distortions in regions that are
flat, as in the sky region of the image. Figure 5-10 shows recovered host and signature images
for two different quantizations of the signature data, using texture masking. In this case, the
embedded images are lossy JPEG compressed to 89%. Obviously, the quantization matrix of
Figure 5-5 yields better results than the one shown in Figure 5-4 at the cost of more host bits
per signature coefficient.

Figure 5-11 shows the quality of the embedded and recovered images using the PSNR as

a measure. It is clear from these graphs that one can achieve better quality embedding using
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the quantization matrix of Figure 5-5 at the cost of lower bit rate for the hidden data. Even at
25% embedding, one can recover visually acceptable quality results for up to 90% lossy
JPEG compression.

Notice that the PSNR of the embedded image stays almost constant, independent of the
JPEG compression (Figure 5-11(a)). This is because the embedding procedure is based on
block DCT, as is JPEG compression. This also explains why the PSNR actually increases
beyond 90% JPEG compression. The mid-frequency components, which encode the signa-
ture signal, are being removed at this point, thus making the embedded image more similar to

the original host image!

5.5 Discussions

Figure 5-12 shows the PSNR of the embedded image as a function of embedding ran-
dom Gaussian noise at varying standard deviations. This is not additive Gaussian noise added

to the host, but rather random Gaussian noise embedded using the MLDCT method. The

(b) Signature image
(128 x 128)

(a) Host image
(512 x 512)

FIGURE 5-8. Test images.
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(a) Embedded without texture masking -
(e = 5, 89%, PSNR 26.8dB)

{b) Embedded with texture masking
(=5, y=2, 89%, PSNR 29.4dB)
FIGURE 5-9. Watermarked images with and without texture masking. The signature
quantization matrix shown in Figure 5-1(b) is used. Host image is 512x512 pixels and the
signature image is 128x128 pixels. Notice the visible distortions in the sky region in (a).
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(a) Host image recovered from
Figure 5-9(b) (PSNR 36.8dB)

(b) Signature image recovered
from Figure 5-9(b) (PSNR 31.7dB)

(e) Signature image recovered
from (c) (PSNR 22.2dB)

(c) Embedded image (256x256) (d) Host image recovered from (c)
(a=5, 89%, PSNR 22.7dB) (PSNR 31.4 dB)

FIGURE 5-10. Data embedding and recovery at two different bit rates using texture masking.
(a), (b) show results at 6% embedding; (c), (d) and (e) show the resuits for embedding
signature data whose size is 25% of the 256x256 host image.
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FIGURE 5-11. PSNRs of embedded, recovered host and signature images (with scale factor
5) for different lossy JPEG compression factors. The solid lines are for 6% embedding using
the quantization matrix of Figure 5-6. The dashed line shows the results at 25% embedding

using the quantization matrix of Figure 5-4.

PSNR
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FIGURE 5-12. PSNR of embedding gaussian noise with variable variance and at different
scale factors.

noisy image is of size 128x128 and the signature quantization matrix of Figure 5-1(b) is used
(6.25% embedding). Results for different scale factors are given. The purpose of this exercise

is to draw a similarity between signature image embedding and random noise insertion, in
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terms of PSNR. From the graph, it appears that a Gaussian distribution of standard deviation
8, would result in a similar PSNR as a signature. This provides a rough estimate of how much
one can corrupt the image before the image shows perceivable distortions.

In summary, we have proposed a robust data hiding technique for embedding images in
images. A key component of this scheme is the use of multidimensional lattice codes for
encoding signature image coefficients before inserting them into the host image DCT coeffi-
cients. Texture masking is used to reduce distortions in the embedded image by adaptively
controlling the weights associated with the hidden data. The hidden signature data can be
recovered in the absence of the original host image. Experimental results show that this
method is robust to lossy image compression using JPEG. One can trade-off quantity for

quality of the embedded image by choosing appropriate signature quantization matrices.
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Chapter 6
Vector Embedding

In Chapters 3 and 4, we examined data embedding using wavelet transform. The data is
fused in thé wavelet transform domain. For example, signature image coefficients in the LL
band are combined with the host image coefficients in the LL band to result in the LL-band
fused image coefficients. Since the coefficients are merged in the corresponding sub-bands,
we refer to this class of techniques as scalar embedding.

In this chapter, we explore a novel extension to the scalar methods, wherein the signature
and host coefficients are considered to be part of complementary (orthogonal) sub-spaces. As
we will see in the next section, direct embedding using coefficients from two orthonomal vec-
tor spaces is not practical. In the proposed method, using the host and signature data, a new
signal for insertion is created. This signal is referred to as the B-Signal. This B-Signal is then
inserted into the host using the MLDCT method described in Chapter 5.

We will demonstrate the feasibility of reconstructing the B-Signal, and hence the original
signature, from the embedded signal. As in the MLDCT method, this does not require the
original host data in the decoding process. We call this method Vector Embedding to differen-
tiate it from the scalar embedding methods described earlier, and refer to this method as
MVDCT. )

The next section explains the embedding approaches for the wavelet coefficients with a
review of scalar embedding and the theoretical approach of vector embedding. Section 6.1
and Section 6.2 discusses the orthogonal vector addition embedding technique including pB-
Signal calculation. Section 6.3 represents the embedding method with B-signal. Experimental

results are given in Section 6.4 and conclusions in Section 6.5.
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FIGURE 6-1. A schematic of embedding in the DWT domain.

6.1 Embedding in Wavelet Domain Revisited

Figure 6-1 which shows a schematic of the scalar embedding approach discussed in
Chapter 3. As mentioned earlier, in scalar embedding the host and signature image coeffi-

cients are added in the corresponding subbands to obtain the fused coefficients, as given by
(6.1) and (6.2).
da _.d d
Asz(x) = Asz(x) +ao- AZJ-S(x) 6.1)

Dz,.ﬁ(x) = D_H(x) + &~ D ;S(x). 6.2)
The combined coefficients are then inverse transformed to obtain the embedded signal I:I(x) .

Thus the approximation signal A;-I:I is located in the vector space V e Similarly, the

detail signal ngfl is located in the orthonomal vector space 02,- .
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FIGURE 6-2. A schematic of vector embedding. I:I(x) is the virtual embedded image.

6.1.1 Vector Embedding

Recall (Chapter 3) that the vector space of sz“ is the union of Vz,- and O NE

Ozj + sz = sz"l * (6‘3)

Thus the approximation and the detail signals at resolution 2j combined to give the
approximation at the resolution ZJ 1 , 1.e., given a signal %(x) , One can write,
d % _ p d 7
Az,-.,,,f = DzjfEB Azjf. (6.4
Consider now the following scenario. Let the host signal H(x) be the approximation at reso-
lution 2’ . Denote this signal by éa(x) . Let the signature signal be the corresponding detail
signal at resolution 2j . Denote this signal by gad(x) .Let
- d~ _ ,d =
This is illustrated schematically in Figure 6-2.

Figure 6-3 illustrates this with an image examples. Here H(x) is the host image, and

S(x) is the signature image. Assume that H(x) and S(x) have the same number of pixels.

Further, it is assumed that
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Embedded image ~ image
(Virtual image) D_H/a e

Signature Recovered
image S(x) signature image

FIGURE 6-3. An embedding scheme which combines data from the approximation and detail
signals.

ASH(x) = H(x), (6-6)
D,H(x) = S(x), ‘ (6-7)
A2j+.ﬁ(x) = H(x) ® S(x). (6-8)

In the above example, the images are considered as one-dimensional signals by row

scanning the pictures. Note that the resulting fused image consists of twice as many pixels.

6.2 The B-Signal

The de-embedding of I:I(x) is robust to additive noise. However, the increase in the size

of the embedded signal is clearly a disadvantage. One can sub-sample the embedded signal to

reduce the dimension, but this seriously affects the reconstruction.

Consider H(x), as defined in (6-8). Let
H(x) = (HX)), , (6-9)

Thus H(x) is generated by keeping all the even samples of I:I(x) .
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' H(x)

Ho(X) —> | Selected area —>
Host image

]

: assign:

| approxngmation | H(x)
S(x) '
Signature | assign: | S(x)
Image detail signal

Calculation

H(x) T

—> B(¥)

modified signal
for embedding

1D- IDWT
(Haar WT)

H(x)

Embedded
coefficients

FIGURE 64. Generating the B -signal.

Note that, from (3.8), we have

H(x) = ﬁ(H(x) + o - S(x))

Ideally, we would like to have

H(x) ~ H(x).

Consider now the modulation of H(x) by asignal $(x) such that

where C ia a constant. From (6-12),

B(x) = J2H(X) (o S(x) +C)

H(x)+C

H(x) ~ H(x) = B(x) - %(H(x) +C)+ ﬁ(a -S(x) +C)

H(x)

Choose even
coefficients

(6-10)

(6-11)

6-12)

(6-13)

B(x) is simply a non-linear gain factor that is dependent on the deviation of H(x) from

S(x). We refer to B(x) as the B-Signal. In the embedding procedure, the B-Signal is our

modified signature that is now embedded into the host signal instead of the original signature

image.

Figure 6-4 shows a schematic of this procedure for generating the B signal. Figure 6-

5(d) shows the B(x) for the airplane signature image and the pyramid host image. The host

and the signature test images are gray scale 256x256 and 128x128 size images, respectively.
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(b) Signature image S(x)
(128x128)

(d) B-Signal B(x) with (b)
and (c). (normalized
256 levels, 128x128)

(a) Host image Hy(x) i .
(256x256) (c) Selected host image region H(x)
(128x128)

FIGURE 6-5. An example of a B—signal.

Figure 6-5(c) is the selected host image used for computing this f signal. Summarizing the
steps:

1. Chose the selected host image region H(x) that is of the same size as S(x). In our
examples, the signature size is one quarter the size of the host image. A private key can
be used to encrypt the data.

2. Consider H(x) as the approximation signal A;,-I:I(x) and S(x) as the detail signal
D 2jI:I(x) . The virtual embedded approximation signal A;j+ ,fI(x) is then obtained by
the one-dimensional inverse DWT operation.

3. Choose only the even coefficients of ﬁ(x) .
4. Calculate the -Signal using (6-13).

6.3 Embedding Procedure with 3-Signal: MVDCT

The B-Signal is embedded into the host using the MLDCT method presented in Chapter
5. After computing B(x), we compute the 8x8 block DCT and quantize the DCT coefficients

using the quantization matrix (see Chapter 5). The quantized coefficients are then lattice

coded and adaptively embedded into the host image using texture masking. Figure 6-6 shows
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Texture factor y

—> | Texture masking -—l
fused
Hy(x) coefficient -
Host ——> |DCT encoder | ——> [ IDCT| —> H(x)
image 88 block A Embedded
Encryption key | Tquantized coefficients Image

l I

B-Signal B : it

SX) —— ¢ —— > | DCT| ——> | Adaptive Quantization
. Calculation

Signature

image 8x8 block

FIGURE 6-6. A schematic of the MVDCT procedure.

a schematic of our proposed data embedding algorithm. The embedded image fI(x) is
obtained by the inverse DCT of the encoded coefficients.

6.3.1 Extraction

Decoding the embedded image follows an inverse sequence of operations. Given an

embedded image Hg(x), we compute the host and B-Signal images as explained in

Section 5.3.2. Let a degraded embedded image be denoted by ﬁ\E(x) . Figure 6-7 shows a

schematic for extracting the hidden data. From (6-13), the signature is then computed as

S(x) = - (Hex) - (JV2-Bx)-C-(B(x) + 1)) (6-14)

1
a
where ﬁE(x) and E(x) are the reconstructed host and signature data after being recovered
from the MLDCT method.

As compared to the MDWT and MLDWT methods in Chapter 3 and 4, signature recov-
ery using (6-14) is quite stable even though the original host image is not available. This is

due to the fact that the B-Signal adds only the non-redundant information about the signature
image. This is further supported by our experimental results detailed below.
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—> |Texture masking Texture factor’y
—_ l Extracted host Extracted
HEe(x) coefficient Host image
— DCT decoder | —————— = [IDCT | —> _
Degraded Ho(x)
Embedded 8x8 block A
image . ! .
Encryption key, |Extracted signature
coefficient
v R .
Reverse Adaptive | ___ 5 | pCT P(x) > B-Signal 59
Quantization Recovered | decoding Extracted
8x8 block  [-Signal Signature
image

FIGURE 6-7. A schematic for extracting hidden data.

6.4 Experimental Results and Discussions

The following experiments demonstrate the superiority of the MVDCT embedding pro-
cedure compared to the methods described in the previous chapters. Note that the MLDCT
and MVDCT methods do not require access to the original host data for signature reconstruc-
tion.

For the following experiments we use the pyramid image in Figure 6-5(a) as the host
and the airplane image in Figure 6-5(b) as the signature. Furthermore, the size of signature
image is one quarter the size of the host image. .

Figure 6-8 (a), (b) show the embedding using the MDWT method. For this example, we
use the one-dimensional DWT. Both the signature and host images are row-scanned to get the
one-dimensional vectors, and are combined using the methodology described in Chapter 3.
The image shown in Figure 6-8(a) is the JPEG compressed watermarked image. The recov-
ered signature is shown in Figure 6-8(b) with 18.3 dB of PSNR quality. In MDWT, it is

assumed that the original host is available for recovery.
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(b) Recovered signature
(PSNR 18.3dB)

(e) Recovered signature
. g image from (c)
(d) Recovered host image from (c) (PSNR 15.7dB)

(PSNR 31.4dB)

(h) Recovered Signature

(f) =5, 89%, PSNR 22.9 dB) (g) Recovered host image from (f) (PSNR 27.5 dB)
(PSNR 31.5 dB)

FIGURE 6-8. Examples of embedded and recovered signature image using (a), (b) the
MDWT method, (c)-(e) the MLDCT method, and (f)-(h) the MVDCT method.
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——Rewdired-slgnature E a=g: + : : o
af | QuEBe x [t e
af . .. Recovered host
Z Z | Embedded image: ‘
" Recovered signature SRR
JPEG compression ratio JPEG compression ratio
(a) PSNR results for MDWT. (b) PSNR resuits for MLDWT.

FIGURE 6-9. PSNR results for varying JPEG compression. (a) results for the MDWT, (b)
results for the MLDCT.

Figure 6-8(c) shows the embedded and compressed image using MLDCT. The scale fac-
tor is chosen such that the PSNR of the embedded signal is approximately the same in all the
cases described here. The MLDCT method does not require the original host. The recon-
structed host and signature data are shown in Figure 6-8(d) and (e). The reconstructed signa-
ture image has a PSNR of approximately 16 dB, which is worse than the results of MDWT
because the lattice coder cannot recover highly degraded signals. Some portions of the recon-
structed image show the blocking artifact.

Figure 6-8(f)-(i) show the result of embedding and reconstruction using the MVDCT
method. Similar to the MLDCT, the original host image is not neeaéd. Notice, however, the
significant improvement in quality for the recovered signature in F iguré 6-8(1). The quality of
the recovered host images from MLDCT and MVDCT are almost the same. The quality of
the signature from the MVDCT method is 27.5 dB, Whlch 1S more then 10 dB increase from
the MLDCT method.

Figure 6-9 (a) and (b) show the PSNR quality relation of the embedded host and recov-
ered signature as a function of the JPEG compression factor for the MDWT and MLDCT

methods, respectively. Results for the two different values of the scale parameter alpha are



6.4 Experimental Results and Discussions 93

24
z Z
o [«
o 50 100
JPEG compression ratio JPEG compression ratio
(a) PSNRs of recovered host image (b) PSNRs of recovered signature image

and embedded image

FIGURE 6-10. PSNR resulits for the MVDCT at varying JPEG compression rates.

shown. In order to compare the quality of the reconstructed signature image, we used embed-
ded images of similar quality (about 23 dB PSNR). However, the quality of the recovered sig-
natures were very different.

In Figure 6-9(a), the quality of the recovered signature is very high for low JPEG com-
pression rates, and degrades rather quickly at higher compression rates. Recall that the basic
embedding idea of the MDWT method is to simply merge coefficients from host and signa-
ture images. In the recovery process, the recovered signature coefficients are simply sub-
tracted from the embedded coefficients of the original host. Figure 6-9(b) also shows the
PSNR for the recovered host and signature using the MLDCT method. The quality of the
recovered signature depends on the quantization levels in MLDCT. Compared to the MDWT,
the MLDCT technique demonstrates much better quality reconstruction for up to 85% JPEG
compression.

Figure 6-10(a) shows the PSNR of the embedded image and the recovered host using
MVDCT. Since the host recovery steps are identical to MLLDCT, the PSNR for the recovered
host is almost identical to the MLDCT. However, note the improvement in the signature

image quality, measured in PSNR, in Figure 6-10(b). There is an improvement of about 7-
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8dB on average compared to the MLDCT method. Beyond 80% JPEG compression MVDCT
appears to provide better quality of the reconstructed signature images compared to the
MDWT as well.

6.5 Summary

We have presented a robust scheme for data hiding using the vector embedding tech-
nique on the orthogonal wavelet coefficients vector spaces. This scheme presents a frame-
work for a more robust and adaptive digital watermarking scheme, aimed at hiding large
amounts of data into a host. In the next Chapter, we will explore potential application of the
MVDCT method to lossless data hiding and hiding in MPEG coded video.
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Chapter 7
Applications

We present two applications of data hiding in this chapter. The first one demonstrates
that lossless recovery of the signature is possible, even from lossy compressed images. In this
example we embed text (ASCII) data into an image and recover it even when the embedded
image is lossy compressed. To the best of our knowledge this is the first time that lossless
recovery of large signature data from lossy compressed images is demonstrated. In the second
application we demonstrate video-in-video embedding that is robust to motion compensated
coding. The chapter concludes with discussions on a possible application to image quality

measurement.

7.1 Lossless Data Hiding

Much of the recent digital watermarking research is concerned with robustness to signal
processing operations. Since the watermark is needed for authentication, lossless recovery is
not a primary requirement. In general, in data hiding lossless recovery may not be the main
requirement if the embedded signal is an image, audio or video data. However, lossless recov-
ery of embedded data would enable new application domains, including secure communica-
tions, embedded control, and image/video quality estimation. While there exists some simple
methods for lossless encoding and decoding, these methods are not robust to even small

changes to the embedded signal.
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Steganography is the art and science of communicating in a way which hides
the existence of the communication. In contrast to cryptography, where the “enemy”
is allowed to detect, intercept and modify messages without being able to violate
certain security premises guaranteed by a cryptosystem, the goal of steganography
is to hide messages inside other “harmless™ messages in a way that does not allow
any “enemy” to even detect that there is a second secret message present [Markus

Kuhn 1995-07-03].

(a) A text message

(c) Watermarked and
compressed image

(80% JPEG)
FIGURE 7-1. Text message embedded in an image.

(b) Host image
(from [5])

7.1.1 Hiding Text Dat= in Images

Hiding text in images is useful in secure communications. Applications include
encrypted e-mail, adding text metadata in images, and captions in images and video. While
there are many commercial and shareware software packages that offer this functionality, all
of them require that the watermarked image remains intact. The primary reason for this is that
almost all these methods depend on encoding the information in the Least Significant Bit
(LSB), and hence are very susceptible to simple compression schemes, such as the JPEG.

The MLDCT method described in the previous chapter can be easily extended to hide

text or control data in images and video. Figure 7-1 shows an example where the text in
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FIGURE 7-2. PSNR results for the embedding example of Figure 7-1.

Figure 7-1(a) is hidden into the host image of Figure 7-1(b). The alpha-numeric characters of
the text are transformed to Ejg lattice codes and are then embedded using the MLDCT method.
In this embedding, one byte of signature data is inserted in each 8x8 block of the host image
coefficients. The embedded image, compressed by 80% using JPEG is shown in Figure 7-
I(c). One can recover the original text without loss at up to 90% JPEG compression.

Figure 7-2(a) shows a plot of the PSNR of the embedded and recovered host image of
Figure 7-1(b) as a function of JPEG compression factor. We used a scale factorof @ = 3 in

these experiments. For this a and for the host image of Figure 7-1(b), one can obtain lossless
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Video t - Re\?:iggd Il

: MPEG2 MPEG2 ;
Embedding| —— Encoder | —— Decoder ——> | Extracting

- _] Received
Signature ’:l 5| Signature n

FIGURE 7-3. Schematic of video embedding technique

recovery of the text for up to 90% JPEG compression. Figure 7-2(b) shows a similar curve
for embedding four bytes of signature data in every 8x8 block of host data. Predictably, the
higher embedding rate is at the expense of lower recovery performance - in this case the limit
is slightly below 90% JPEG compression. Note that the PSNR drops rapidly beyond the limit

for lossless recovery.

7.2 Images and Video in Video

While there is much published work on video watermarking [54-56,80,83,95,96], very
few address video data hiding. For example, Swanson and Tewfik describe hiding video in
video [109-114]. Their algorithm can hide 2 bits per one 8x8 block. This embedding rate is
typical of most video watermarking methods where the data hiding rate is about 0.5-1% of
the host data.

Video watermarking techniques are straight-forward extensions of image watermarking
techniques (see Figure 7-3). Each frame of the signature video can be embedded in the corre-
sponding frame of the host video. This approach, though, may not be robust to motion com-
pensated coding because of the frame-based embedding scheme. In many cases, one has
access to coded video streams rather than the individual frames, and techniques that can
insert the data directly into the compressed bit streams are of interest.

In the following we assume a YUV color space representation {24,26,83,109-114]. This

facilitates a simple extension from images to digital video, such as those in the MPEG for-
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Signature image
(a) Host frame # 5 (b) Sig
(QCIF, 176x144) (40x32)

FIGURE 7-4. Test data. (a) The Y component of car QCIF video frame 5. (b) A signature
image

mat. Note that the chrominance components are spatially down-sampled by a factor of two in
JPEG and MPEG.

In Figure 7-3, the signature video frame is first embedded into the host video frame, and
the embedded video is subjected to MPEG2 coding. Embedded signature recovery follows an
inverse sequence of operations. The MPEG stream is first decoded into its corresponding
image frames. Then the signature is recovered for these individual frames. As we will demon-

strate in the following, the MVDCT is quite robust to MPEG compression.

7.2.1 Images in Video

First, we consider hiding a still image in a video sequence using MLDCT (see Chapter
5). Figure 7-4(a) shows one frame of a QCIF resolution (176 x 144 pixels) video. Figure 7-
4(b) shows the still image to be embedded, which is about 1/16-th the size of the video frame.
The compressed video is at 550K bps with 30 frames/second.

Consider embedding a still image signature in each of the frames of the video. Then the
embedded frames are compressed using MPEG-2 at 600K bps. Figure 7-5(a) shows the frame
after embedding and Figure 7-5(b) is the result after the MPEG-2 encoding. Figure 7-5(c)
shows the recovered video frame. Since I-frames in the MPEG-2 sequence are JPEG com-
pressed, the results would be similar to image-to-image embedding described in the previous
chapters. The frame #5 shown is a B frame. The reconstructed signature from this B frame is
shown in Figure 7-5(d). The reconstructed signature image from two P frames are shown in
Figure 7-5(e) and Figure 7-5(f). Figure 7-6 shows the PSNR of the compressed host, embed-

ded host, recovered host video, and recovered signature image. In general, it appears that the
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(@ fi;r;?re_,Se\:ﬁg\ csig?le (b) MPEG2 result from (a) (c) Extracted from (b)
edaaing 5.5dB
(PSNR 30.8dB) (PSNR 27.8dB) (PSNR 35.5dB)

U@ (d) Retrieved signature image from (c).(B-frame: PSNR 24.8dB)

' (e) Retrieved signature image after MPEG coding from embedded frame #4
(P-frame: PSNR 35.1dB)

B3 | (f) Retrieved signature image after MEPG coding from embedded frame #7
3 (P-frame: PSNR 19.4dB)

FIGURE 7-5. Embedding a still image in MPEG video frames.

MLDCT method is robust to motion compensation for applications that need embedding still

image data into video.

7.2.2 Video in Video

The MLDCT and MVDCT methods can be easily extended to embedding video in
video. The data embedding rate is 1/16th as before. One can embed, for example, a frame of
similar resolution as the host video in every 16 frames of the host.

Figure 7-7(a) shows a host video frame and Figure 7-7(b) a frame from the signature
video. Host and signature video are from the MPEG-7 video data collection (CD reference
number #16. The host frames are from cm1002.02500 to cm1002.02800 and the signature
frames are from cm1002.11700 to cm1002.11750.) The size of the video frames are 352x240
pixels. Each signature frame is divided into 16 blocks. Each block is then embedded into one
host frame. We use a compressed bit rate of 2Mbps, which corresponds to the MPEG recom-
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PSNR

(a) A: original host, MPEG2 coded at 600kbps. B: retrieved video frame )
C: embedded video frame. D: embedded video, MPEG2 coded at 600Kbps.

PSNR

(b) PSNRs of retrieved signature image

FIGURE 7-6. PSNR of host video and recovered signature image

mended bit rate for the quarter resolution NTSC video at 30 frames per second (Note. for the
full NTSC resolution this corresponds to SMbps.)

Even though the MLDCT method works reasonably well for hiding still images in video,
the results for hiding video signatures in video are not quite satisfactory, as the followihg
example demonstrates. Consider Figure 7-8. Figure 7-8(a) and (b) show the recovered host
frames after MPEG2 coding from the watermarked frame # 0 (frame #cm1002.02500) and
frame # 2 (cm1002.02502). Figure 7-8(c) and (d) show the recovered signature frame # 0
(exactly, cm1002.11700) and frame # 1 (cm1002.11701) from each of the sixteen recovered
embedded host frames. The PSNRs of the recovered signature video frames are 14.5dB and
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(a) Host video frame # 0 (b) Signature video frame #0
(size: 352x240) (size: 352x240)

FIGURE 7-7. test data. (a) The Y component of a video frame. (b) The Y component of a
signature frame.

(a) Recovered host frame #0 (b) Recovered host frame # 2
(PSNR: 31.0dB) (PSNR: 22.2dB)

(d) Recovered signature frame #2
(PSNR: 14.5dB) (PSNR: 14.2dB)

FIGURE 7-8. Results using the MLDCT algorithm. (a), (b) Recovered host frames. (c), (d)
recovered signature frame # 0 and frame # 2.
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14.2dB, respectively. Notice the difference in quality between the I-frame embedded and P-
frame embedded blocks. For example, the top-left block of the Figure 7-8(c) is of good qual-
ity because this block is embedded in an I-frame in the MPEG 2 sequence. Blocks embedded
in P- or B-frames show significant amount of visible noise in the reconstructed image, mak-
ing them practically useless.

However, the MVDCT method for this video in video embedding offers significantly
improved results. Figure 7-9 shows some examples of using the MVDCT method. The water-
marked video frame # 0 and frame # 2 are shown in Figure 7-9(a) and (b), respectively, with
scale factor & = S. Figure 7-9(c) and (d) show its degradation by MPEG2 coding from
Figure 7-9 (a), (b), respectively. Figure 7-9(e) and (f) show the recovered video frames from
Figure 7-9 (c), (d), with a PSNR of 35.7dB and 31.7dB, respectively. The quality of recov-
ered host frames of MVDCT are similar to that of MLDCT method, as is to be expected.
Compared to the MLDCT, the quality of the recovered video frames of MVDCT are much
improved, as shown in Figure 7-10. In this experiment, the MPEG-2 bit rate is 2M bps, 30
frames/second. Figure 7-10(a) and (d) show the original and recovered B-Signals. The recov-
ered signature frame blocks are shown in Figure 7-10(e)-(f). These reconstructed signature
images have PSNRs of around 45 dBs. It is observed that, in general, MVDCT offers stable
and robust embedding in I-, P- and B-frames in MPEG-2 sequences.

Figure 7-11(a) shows the PSNR of the original MPEG compressed host video and the
watermarked frames for the MLDCT method for the first 32 frames of the video. It also
shows the PSNR of the MPEG compressed embedded video and the recovered host video.
The plot ‘o’ shows the PSNRs of the MPEG coded original frames without embedding. The
plot ‘x’ shows the PSNRs of the watermarked frames and their MPEG decoded frames are
shown in the plot ‘+* at the bottom. The plot © -’ shows the PSNRs of the extracted host
frames. Figure 7-11(b) shows the corresponding PSNR for the MVDCT method. As men-
tioned above, the PSNR of the recovered and watermarked hosts are very similar to Figure 7-
11(a). Figure 7-11(c) shows the PSNRs of the recovered signature video of the MVDCT and
MLDCT methods. These show about 30dB PSNR difference between the two methods.
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(a) Watermarked frame #0 (b) Watermarked frame # 2
(PSNR 31.5dB) (PSNR 31.1dB)

(c) Frame # 0 after MPEG2 coding (d) Frame # 2 after MPEG2 coding
(PSNR 28.1dB) (PSNR 21.5dB)

(e) Recovered frame # 0 (f) Recovered frame # 2
(PSNR 35.7dB) (PSNR 31.7dB)

FIGURE 7-9. Host video recovery: embedding scheme used is MVDCT. (a), (b) Watermarked
frames. (c), (d) Embedding frames after MPEG2 compression at 2M bps. (e), (f) Recovered
frames from (c), (d), respectively.
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1

i (b) p-Signal B1
(B type: 88x56)

(a) p-Signal B0
(I type: 88x56)

(d) Received B-Signal B1

¢) Received (3-Signal 0
© B B (PSNR 18.9dB)

(PSNR 28.1dB)

B (f) Recovered signature

(e) Recovered signature
part1 (PSNR: 44.7dB)

part0 (PSNR: 45.9dB)

(h) Recovered signature frame # 1
(PSNR: 45.0dB) (PSNR: 43.7dB)

(g) Recovered signature frame # 0

FIGURE 7-10. Signature video recovery. (a), (b) B-Signals. (c), (d) Received B-Signals. (e), (f)
Recovered signatures. (g), (h) Whole recovered signature frame # 0 and frame # 2.

7.3 Discussions

7.3.1 Image Quality Estimation

Considerable work has been done on measuring the quality of images and video [119].
Many of these are based on models of human visual system. The basic problem that is
addressed is, given the original and the degraded images, what is the metric that best captures

the perceptual degradation. It is well known that simple metrics such as the mean-squared
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FIGURE 7-11. (a) PSNRs of the host video frames with MLDCT algorithm. (b) PSNRs of the
host frames with MVDCT aigorithm. (c) PSNRs of recovered signature using MLDCT and
MVDCT methods.
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error are not good for quantifying perceptual distortion. One promising measure in this con-
text is the just noticeable difference, proposed in [94].

One can use the lossless embedding method described in this chapter to include informa-
tion regarding the original image such that, at the receiver, one can “estimate” some measure
of the received image quality. Note that we are not interested in defining what this quality
measure is or how it is to be computed. However, the user, by choosing the data to embed, can
embed enough information to compute the performance metrics of his/her choice. The fol-
lowing presents some preliminary experimental results.

The following assumptions are made: image pixels are sampled such that statistics com-
puted from these pixels are representative of the overall image properties. For the experiment,
we randomly choose one pixel from every other 8x8 block in the image, say the black blocks
in a checker board pattern of blocks, alternately colored as black and white. The pixel inten-
sity is then embedded in the preceding white block, similar to embedding text in the previous
section. This embedded signal then forms the “signature” of the original image.

Since we can recover this signature without error, this can be used to estimate the PSNR
of the received image. Since the white blocks are not changed, if the image is not modified
then the reconstructed host samples forming the signature are identical to the recovered hid-
den signature. Again we assume that any distortion of the embedded image is spread uni-
formly over the entire data. In particular, we assume that the degradation does not selectively
affect the specific set of pixel samples used to form the signature signal. Furthermore, if the
intention is to find out if any pixel in the image has changed, one can form the signature in a
different way that could contain sufficient information about the image so as to find out any
pixel modifications.

Figure 7-12 shows the plot of the estimated PSNR as a function of JPEG compression.
The curve A is for the measurements comparing the recovered signature and recovered host.
In practice, this is the only estimate that we can compute. Curve B is the PSNR computed
using the recovered host and the original host. Ideally, this is what we would /ike to compute.
The curves shown are average performance characteristics, averaged over 30 different

images. Beyond 85%, on the average, the signature recovered is no longer guaranteed to be
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FIGURE 7-12. PSNR vs. JPEG compression. Curve A is for comparing recovered signature
with recovered host. Curve B is for recovered host and original host.

lossless. This can be see by a sudden dip in the PSNR beyond about 85% compression. We
can make the following general observations:

1. one can detect whether the image has been changed or not. This is quite simple

2. if the image has changed, but the change is not significant, it is hard to quantify the

degradation using PSNR. This is true for compressions of up to 80% in the above
experiment.

3. if the image has undergone severe compression (>85%), it is possible to detect such

changes, éven if the reconstructed image is of good perceptual quality.

I'I:h‘e,exi_sting literature on image quality estimation invariably makes the assumption that
one has access to the original data. This may not be the case in most practical broadcast appli-
cations, and may be expensive to make the original data available in other applications as
well. Lossless data hiding may be an alternative approach to consider for quality estimation.
However, much more work remains to be done in developing a practical methodology for

reliably estimating the image quality.
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7.3.2 Summary

In conclusion, we note that the methods developed in Chapters 3-6 enable new applica-
tion domains in multimedia processing. In addition to applications to watermarking and steg-
anography, the proposed methods have potential applications to multimedia data control and
in the emerging MPEG standards such as the MPEG-4 and MPEG-7. The easy of access to
and manipulation of content makes it all the more important that the multimedia content be
protected from unauthorized uses. MPEG has stared working on a new standard for multime-
dia that enables content to be searched for and delivered based on usage rights, and data hid-
ing technologies such as the ones described in this dissertation are very useful for such

applications.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this research we have developed several new techniques for robust hiding of image
and video data. These techniques enable embedding large amounts of data and facilitate sig-
nal recovery in the absence of the original host. The proposed methods include the MDWT
method (Chapter 3) that uses an extended spread spectrum technique in the discrete wavelet
transform domain, and the MLDWT (Chapter 4) method that uses a channel/source coding
technique. The MLDCT (Chapter 5) method enables hidden data extraction without addi-
tional host information, and the MVDCT (Chapter 6) method uses vector embedding that is
robust to motion compensated video coding. Two interesting applications of these embedding
methods to lossless text data recovery from lossy compressed images, and video-in-video

hiding, are presented in Chapter 7.

8.2 Summary of Contributions

One of the main contributions of this thesis is the development of methodologies for
large quantity data embedding. The results presented here are among the first to report gray
scale image hiding in images. As the results demonstrate, the signature recovery is quite
robust to DCT and wavelet based image compression. Since these techniques enable large
quantity data embedding, one can achieve robustness to image manipulations for watermark-

ing related applications by having redundancy in the signature data.



112 Chapter 8. Conclusions and Future Work

In Chapter 3, we presented an extended spread-spectrum technique, the MDWT, that
distributes the message data in the wavelet sub-bands. Using this method, one can embed
images which are up to 25% of the host data size. This method is quite robust to JPEG and
wavelet compression. .

Chapter 4 extends the wavelet-based embedding technique by first encoding the signa-
ture data using lattice codes (MLDWT). The lattice codes add error resilience to signature
recovery and offers a structured embedding methodology.

In Chapter 5, we present the MLDCT algorithm which combines lattice encoded signa-
ture coefficients and an adaptive texture masking that embeds data using the DCT. Compared
to MDWT and MLDWT, this method does not require the original host to recover the hidden
data. Methods that do not require the original host are very desirable in applications such as
hidden communications. This method is also shown to be quite robust to JPEG compression.

Chapter 6 extends the wavelet-based embedding in a new direction. In this method,
which is referred to as the MVDCT, a new signal is derived from the signature and host
images. This new signal, called the B-Signal, is then inserted into the host using the MLDCT.
The B-Signal captures the non-redundant data that needs to be inserted into the host. This
enables high quality embedding and recovery that is resistant to both JPEG and MPEG com-
pression.

In Chapter 7, we demonstrate applications using MVDCT for lossless data hiding. We
consider the example of hiding a text message into an image, and the message is recovered
without error even when the embedded image is lossy compressed. This is among the first
demonstrations of lossless message recovery from lossy (compressed) embedded data. Fur-
thermore, we demonstrate that the MVDCT method is robust to motion compensated coding.
This is illustrated by hiding images and video in video, which is then MPEG compressed.

In summary, the methods presented in this dissertation advance the current data hiding
technology both in terms of the quantity of the data that can be hidden (up to 25% compared
to 1% reported in the literature), and the quality of the embedded and recovered data even
under significant JPEG/MPEG compression (of up to 90% in some cases).
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8.3 Directions for Further Research

8.3.1 Robustness to Signal Manipulation

The primary emphasis in this dissertation is on large quantity data embedding that is
robust to data compression. There is a trade-off between the quantity of the data that can be
embedded and the robustness of the hidden data to signal processing. In digital watermarking
for authentication, intentional or unintentional attacks may include, in addition to signal com-
pression, scaling, cropping, rotation of images, and digital-to-analog and analog-to-digital
conversions. No single technique can be resistant to all these attacks simultaneously. How-
ever, the methods proposed in this dissertation have the advantage of embedding large
amounts of data. Since watermarks typically require very few bits compared to the host data
size, one may be able to distribute these bits intelligently so that the embedded data is resis-

tant to specific attacks other than compression. This needs further investigation.

D/A and A/D Conversions: Authentication of printed documents is an interesting prob-
lem that has not received much attention. This is especially important in detecting forgery
(for example, printing of currency notes). With the availability of inexpensive yet very high
quality printers, it is quite easy to forge such documents to get by casual inspections. In the
earlier days, expensive devices costing thousands of dollars were installed in high-end color
copiers to prevent forging of bank notes. The current ink jet printers cost few hundred dollars
and are capable of producing even better quality prints. Watermarks that are robust to D/A
and A/D conversions are of much interest in this context. Hiding data in printed text docu-
ments is another interesting area for further research.

Printing and scanning often result in scaling and/or rotation of the images, in addition to
the D/A and A/D artifacts. One possibility is intensity modulation to encode signature data.
Another possibility is the use of shape modulation of printed text to embed data.

Geometric Distortions: - Pixel based methods are, in general, not quite robust to geomet-
ric modifications such as scaling, cropping, and rotation. Scaling and rotation affect the pixel

values due to interpolation and the embedding schemes need to be resistant to such transfor-
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mations. One possibility is to use adaptive region based encoding wherein the signature infor-

mation is duplicated at many salient image locations.

8.3.2 Applications

Large quantity data embedding and lossless recovery of hidden data open up a domain
of new applications, including image/video quality control, and embedding control informa-
tion in multimedia data.

Image and video quality control is a very important application domain. We presented
some preliminary results in Chapter 7 on estimating the image quality. We are not aware of
any related work in image quality measurements that are based only on the received signal.
The thought of a “black box™ that can automatically compute the quality of the received sig-
nal without any reference signal is very appealing in many applications, including broadcast-
ing. Data hiding can perhaps be further extended to create “smart multimedia” that can self-
correct itself under modifications using embedded control information.

Other potential applications include multimedia databases where the objects in the data-
base “contain” self-information that could be used in navigating the database, or in providing
different levels of access to the users depending on the service that is requested. For example,
object based representations (using region masks) could be embedded into the video stream
that would enable object based functionality using existing video data formats such as
MPEG-2. While many standard bit streams allow for header information where such control
data bits could be stored, embedding the control data in the host data stream has the advan-
tage that it can not be accidentally or otherwise stripped off of the host data. Recently, the
MPEG has started working on developing a new standard - MPEG-21 “Multimedia Frame-
work”. The scope of the standard can be described as the integration of two critical technolo-
gies: how consumers can search for and get content - by themselves or through the use of
intelligent agents - and how content can be decoded for consumption according to usage
rights associated with the content (quoted from a web paper by Leonardo Chiariglione, Con-
vener, MPEG; http://www.cseit.it/leonardo/paper/technoreview99/index.htm). We believe
that the technologies developed in this dissertation would enable such applications.
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